Displaying 161 – 180 of 463

Showing per page

Formules de Jacobi et méthodes analytiques

Hai Zhang (2005)

Colloquium Mathematicae

On se propose de retrouver, via des méthodes d'inspiration analytiques basées sur l'utilisation de formules de représentation intégrale attachées à des applications holomorphes propres d'un ouvert de ℂⁿ dans ℂⁿ, les formules de Jacobi généralisées obtenues par C. A. Berenstein, A. Vidras et A. Yger; le fait de disposer de telles preuves (basées sur un raisonnement limité au cadre strictement affine et ne nécessitant pas le recours à une compactification) autorise l'extension de ces résultats au...

Formules explicites pour les solutions minimales de l’équation ¯ u = f dans la boule et dans le polydisque de n

Philippe Charpentier (1980)

Annales de l'institut Fourier

Dans cet article, on construit tout d’abord un noyau de Cauchy explicite dans la boule unité B de C n dont les valeurs au bord sont égales au noyau de Szegö. Puis, à partir de ce noyau, on construit explicitement les noyaux qui fournissent les solutions de l’équation u = f qui sont orthogonales aux fonctions holomorphes dans les espaces L 2 ( d σ α ) , où d σ α ( z ) = ( 1 - | z | 2 ) d λ ( z ) , d λ ( z ) étant la mesure de Lebesgue et α un réel > - 1 . Nous donnons ensuite les principales estimations dedans et au bord que vérifient ces solutions. Dans une deuxième...

Generalized iterated function systems, multifunctions and Cantor sets

Maciej Klimek, Marta Kosek (2009)

Annales Polonici Mathematici

Using a construction similar to an iterated function system, but with functions changing at each step of iteration, we provide a natural example of a continuous one-parameter family of holomorphic functions of infinitely many variables. This family is parametrized by the compact space of positive integer sequences of prescribed growth and hence it can also be viewed as a parametric description of a trivial analytic multifunction.

Geometry of currents, intersection theory and dynamics of horizontal-like maps

Tien-Cuong Dinh, Nessim Sibony (2006)

Annales de l’institut Fourier

We introduce a geometry on the cone of positive closed currents of bidegree ( p , p ) and apply it to define the intersection of such currents. We also construct and study the Green currents and the equilibrium measure for horizontal-like mappings. The Green currents satisfy some extremality properties. The equilibrium measure is invariant, mixing and has maximal entropy. It is equal to the intersection of the Green currents associated to the horizontal-like map and to its inverse.

Germs of holomorphic mappings between real algebraic hypersurfaces

Nordine Mir (1998)

Annales de l'institut Fourier

We study germs of holomorphic mappings between general algebraic hypersurfaces. Our main result is the following. If ( M , p 0 ) and ( M ' , p 0 ' ) are two germs of real algebraic hypersurfaces in N + 1 , N 1 , M is not Levi-flat and H is a germ at p 0 of a holomorphic mapping such that H ( M ) M ' and Jac ( H ) 0 then the so-called reflection function associated to H is always holomorphic algebraic. As a consequence, we obtain that if M ' is given in the so-called normal form, the transversal component of H is always algebraic. Another corollary of...

Hölder continuity of proper holomorphic mappings

François Berteloot (1991)

Studia Mathematica

We prove the Hölder continuity for proper holomorphic mappings onto certain piecewise smooth pseudoconvex domains with "good" plurisubharmonic peak functions at each point of their boundaries. We directly obtain a quite precise estimate for the exponent from an attraction property for analytic disks. Moreover, this way does not require any consideration of infinitesimal metric.

Currently displaying 161 – 180 of 463