Displaying 321 – 340 of 442

Showing per page

Relative discrete series of line bundles over bounded symmetric domains

Anthony H. Dooley, Bent Ørsted, Genkai Zhang (1996)

Annales de l'institut Fourier

We study the relative discrete series of the L 2 -space of the sections of a line bundle over a bounded symmetric domain. We prove that all the discrete series appear as irreducible submodules of the tensor product of a holomorphic discrete series with a finite dimensional representation.

Reproducing properties and L p -estimates for Bergman projections in Siegel domains of type II

David Békollé, Anatole Temgoua Kagou (1995)

Studia Mathematica

On homogeneous Siegel domains of type II, we prove that under certain conditions, the subspace of a weighted L p -space (0 < p < ∞) consisting of holomorphic functions is reproduced by a weighted Bergman kernel. We also obtain some L p -estimates for weighted Bergman projections. The proofs rely on a generalization of the Plancherel-Gindikin formula for the Bergman space A 2 .

Semi-groupe de Lie associé à un cône symétrique

Khalid Koufany (1995)

Annales de l'institut Fourier

Soit V une algèbre de Jordan simple euclidienne de dimension finie et Ω le cône symétrique associé. Nous étudions dans cet article le semi-groupe Γ , naturellement associé à V , formé des automorphismes holomorphes du domaine tube T Ω : = V + i Ω qui appliquent le cône Ω dans lui-même.

Semistable quotients

Peter Heinzner, Luca Migliorini, Marzia Polito (1998)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Separately radial and radial Toeplitz operators on the projective space and representation theory

Raul Quiroga-Barranco, Armando Sanchez-Nungaray (2017)

Czechoslovak Mathematical Journal

We consider separately radial (with corresponding group 𝕋 n ) and radial (with corresponding group U ( n ) ) symbols on the projective space n ( ) , as well as the associated Toeplitz operators on the weighted Bergman spaces. It is known that the C * -algebras generated by each family of such Toeplitz operators are commutative (see R. Quiroga-Barranco and A. Sanchez-Nungaray (2011)). We present a new representation theoretic proof of such commutativity. Our method is easier and more enlightening as it shows that the...

Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks

Masafumi Yoshino, Todor Gramchev (2008)

Annales de l’institut Fourier

We study the simultaneous linearizability of d –actions (and the corresponding d -dimensional Lie algebras) defined by commuting singular vector fields in n fixing the origin with nontrivial Jordan blocks in the linear parts. We prove the analytic convergence of the formal linearizing transformations under a certain invariant geometric condition for the spectrum of d vector fields generating a Lie algebra. If the condition fails and if we consider the situation where small denominators occur, then...

Slices to sums of adjoint orbits, the Atiyah-Hitchin manifold, and Hilbert schemes of points

Roger Bielawski (2017)

Complex Manifolds

We show that the regular Slodowy slice to the sum of two semisimple adjoint orbits of GL(n, ℂ) is isomorphic to the deformation of the D2-singularity if n = 2, the Dancer deformation of the double cover of the Atiyah-Hitchin manifold if n = 3, and to the Atiyah-Hitchin manifold itself if n = 4. For higher n, such slices to the sum of two orbits, each having only two distinct eigenvalues, are either empty or biholomorphic to open subsets of the Hilbert scheme of points on one of the above surfaces....

Currently displaying 321 – 340 of 442