Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau
We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form , . In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.
We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form |x|α, α ∈ [1/2,1). In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.
Dettweiler and Reiter formulated Euler's integral transformation for Fuchsian systems of differential equations and applied it to a definition of the middle convolution. In this paper, we formulate Euler's integral transformation for systems of linear differential equations with irregular singularities. We show by an example that the confluence of singularities is compatible with Euler's integral transformation.
By using Mawhin’s continuation theorem, the existence of even solutions with minimum positive period for a class of higher order nonlinear Duffing differential equations is studied.
In this paper, a distributed optimal consensus problem is investigated to achieve the optimization of the sum of local cost function for a group of agents in the Euler-Lagrangian (EL) system form. We consider that the local cost function of each agent is only known by itself and cannot be shared with others, which brings challenges in this distributed optimization problem. A novel gradient-based distributed continuous-time algorithm with the parameters of EL system is proposed, which takes the distributed...
The work characterizes when is the equation eventually disconjugate for every value of and gives an explicit necessary and sufficient integral criterion for it. For suitable integers , the eventually disconjugate (and disfocal) equation has 2-dimensional subspaces of solutions such that , , , . We characterize the “smallest” of such solutions and conjecture the shape of the “largest” one. Examples demonstrate that the estimates are sharp.
Several recent oscillation criteria are obtained for nonlinear delay impulsive differential equations by relating them to linear delay impulsive differential equations or inequalities, and then comparison and oscillation criteria for the latter are applied. However, not all nonlinear delay impulsive differential equations can be directly related to linear delay impulsive differential equations or inequalities. Moreover, standard oscillation criteria for linear equations cannot be applied directly...
We consider evolution differential equations in Fréchet spaces with unconditional Schauder basis, and construct a version of the majorant functions method to obtain existence theorems for Cauchy problems. Applications to PDE are also considered.