On finite element procedures of high order accuracy for parabolic equations
We show that any equation dy/dx = P(x,y) with P a polynomial has a global (on ℝ²) smooth first integral nonconstant on any open domain. We also present an example of an equation without an analytic primitive first integral.
In this paper the Leray-Schauder nonlinear alternative for multivalued maps combined with the semigroup theory is used to investigate the existence of mild solutions for first order impulsive semilinear functional differential inclusions in Banach spaces.
We prove the existence of solutions of four-point boundary value problems under the assumption that fulfils various combinations of sign conditions and no growth restrictions are imposed on . In contrast to earlier works all our results are proved for the Carathéodory case.
We deal with the problems of four boundary points conditions for both differential inclusions and differential equations with and without moving constraints. Using a very recent result we prove existence of generalized solutions for some differential inclusions and some differential equations with moving constraints. The results obtained improve the recent results obtained by Papageorgiou and Ibrahim-Gomaa. Also by means of a rather different approach based on an existence theorem due to O. N. Ricceri...
We show the existence of solutions to a boundary-value problem for fourth-order differential inclusions in a Banach space, under Lipschitz’s contractive conditions, Carathéodory conditions and lower semicontinuity conditions.
We prove the existence of monotone solutions, of the functional differential inclusion ẋ(t) ∈ f(t,T(t)x) +F(T(t)x) in a Hilbert space, where f is a Carathéodory single-valued mapping and F is an upper semicontinuous set-valued mapping with compact values contained in the Clarke subdifferential of a uniformly regular function V.
We investigate existence and unicity of global sectorial holomorphic solutions of functional linear partial differential equations in some Gevrey spaces. A version of the Cauchy-Kowalevskaya theorem for some linear partial -difference-differential equations is also presented.