On Funnels of Multis and Their Behavior
We see how the first jet bundle of curves into affine space can be realized as a homogeneous space of the Galilean group. Cartan connections with this model are precisely the geometric structure of second-order ordinary differential equations under time-preserving transformations - sometimes called KCC-theory. With certain regularity conditions, we show that any such Cartan connection induces “laboratory” coordinate systems, and the geodesic equations in this coordinates form a system of second-order...
The paper describes the general form of functional-differential equations of the first order with delays which allows nontrivial global transformations consisting of a change of the independent variable and of a nonvanishing factor. A functional equation for is solved on and a method of proof by J. Aczél is applied.
The paper describes the general form of an ordinary differential equation of the second order which allows a nontrivial global transformation consisting of the change of the independent variable and of a nonvanishing factor. A result given by J. Aczél is generalized. A functional equation of the form is solved on for ,
Let f: ℝⁿ → ℝ be a C² semialgebraic function and let c be an asymptotic critical value of f. We prove that there exists a smallest rational number such that |x|·|∇f| and are separated at infinity. If c is a regular value and , then f is a locally trivial fibration over c, and the trivialisation is realised by the flow of the gradient field of f.
Perceptions about function changes are represented by rules like “If X is SMALL then Y is QUICKLY INCREASING.” The consequent part of a rule describes a granule of directions of the function change when X is increasing on the fuzzy interval given in the antecedent part of the rule. Each rule defines a granular differential and a rule base defines a granular derivative. A reconstruction of a fuzzy function given by the granular derivative and the initial value given by the rule is similar to Euler’s...