On P-Adic Differential Equations. III. On P-Adically Bounded Solutions of Ordinary Linear Differential Equations with Rational Function Coefficients.
A pharmacodynamic model introduced earlier in the literature for in silico prediction of rifampicin-induced CYP3A4 enzyme production is described and some aspects of the involved curve-fitting based parameter estimation are discussed. Validation with our own laboratory data shows that the quality of the fit is particularly sensitive with respect to an unknown parameter representing the concentration of the nuclear receptor PXR (pregnane X receptor). A detailed analysis of the influence of that parameter...
A necessary and sufficient condition is given for the carrying simplex of a dissipative totally competitive system of three ordinary differential equations to have a peak singularity at an axial equilibrium. For systems of Lotka-Volterra type that result translates into a simple condition on the coefficients.
In this paper, by using the topological degree theory for multivalued maps and the method of guiding functions in Hilbert spaces we deal with the existence of periodic oscillations for a class of feedback control systems in Hilbert spaces.
The purpose of this paper is to study the existence of periodic solutions for the non-autonomous second order Hamiltonian system Some new existence theorems are obtained by the least action principle.
This paper deals with the system of functional-differential equations where is a linear bounded operator, , and and are spaces of -dimensional -periodic vector functions with continuous and integrable on components, respectively. Conditions which guarantee the existence of a unique -periodic solution and continuous dependence of that solution on the right hand side of the system considered are established.