The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 601 – 620 of 897

Showing per page

Stabilization of solutions to a differential-delay equation in a Banach space

J. J. Koliha, Ivan Straškraba (1997)

Annales Polonici Mathematici

A parameter dependent nonlinear differential-delay equation in a Banach space is investigated. It is shown that if at the critical value of the parameter the problem satisfies a condition of linearized stability then the problem exhibits a stability which is uniform with respect to the whole range of the parameter values. The general theorem is applied to a diffusion system with applications in biology.

Stabilization of Timoshenko beam by means of pointwise controls

Gen-Qi Xu, Siu Pang Yung (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the above-mentioned...

Stabilization of Timoshenko Beam by Means of Pointwise Controls

Gen-Qi Xu, Siu Pang Yung (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We intend to conduct a fairly complete study on Timoshenko beams with pointwise feedback controls and seek to obtain information about the eigenvalues, eigenfunctions, Riesz-Basis-Property, spectrum-determined-growth-condition, energy decay rate and various stabilities for the beams. One major difficulty of the present problem is the non-simplicity of the eigenvalues. In fact, we shall indicate in this paper situations where the multiplicity of the eigenvalues is at least two. We build all the...

Stabilization of wave systems with input delay in the boundary control

Gen Qi Xu, Siu Pang Yung, Leong Kwan Li (2006)

ESAIM: Control, Optimisation and Calculus of Variations

In the present paper, we consider a wave system that is fixed at one end and a boundary control input possessing a partial time delay of weight ( 1 - μ ) is applied over the other end. Using a simple boundary velocity feedback law, we show that the closed loop system generates a C0 group of linear operators. After a spectral analysis, we show that the closed loop system is a Riesz one, that is, there is a sequence of eigenvectors and generalized eigenvectors that forms a Riesz basis for the state Hilbert...

Stable periodic solutions in scalar periodic differential delay equations

Anatoli Ivanov, Sergiy Shelyag (2023)

Archivum Mathematicum

A class of nonlinear simple form differential delay equations with a T -periodic coefficient and a constant delay τ > 0 is considered. It is shown that for an arbitrary value of the period T > 4 τ - d 0 , for some d 0 > 0 , there is an equation in the class such that it possesses an asymptotically stable T -period solution. The periodic solutions are constructed explicitly for the piecewise constant nonlinearities and the periodic coefficients involved, by reduction of the problem to one-dimensional maps. The periodic solutions...

Stable solutions to homogeneous difference-differential equations with constant coefficients: Analytical instruments and an application to monetary theory

Ulf von Kalckreuth, Manfred Krtscha (2004)

Applications of Mathematics

In economic systems, reactions to external shocks often come with a delay. On the other hand, agents try to anticipate future developments. Both can lead to difference-differential equations with an advancing argument. These are more difficult to handle than either difference or differential equations, but they have the merit of added realism and increased credibility. This paper generalizes a model from monetary economics by von Kalckreuth and Schröder. Working out its stability properties, we...

State elimination for nonlinear neutral state-space systems

Miroslav Halás, Pavol Bisták (2014)

Kybernetika

The problem of finding an input-output representation of a nonlinear state space system, usually referred to as the state elimination, plays an important role in certain control problems. Though, it has been shown that such a representation, at least locally, always exists for both the systems with and without delays, it might be a neutral input-output differential equation in the former case, even when one starts with a retarded system. In this paper the state elimination is therefore extended...

Stationary solutions of semilinear Schrödinger equations with trapping potentials in supercritical dimensions

Filip Ficek (2023)

Archivum Mathematicum

Nonlinear Schrödinger equations are usually investigated with the use of the variational methods that are limited to energy-subcritical dimensions. Here we present the approach based on the shooting method that can give the proof of existence of the ground states in critical and supercritical cases. We formulate the assumptions on the system that are sufficient for this method to work. As examples, we consider Schrödinger-Newton and Gross-Pitaevskii equations with harmonic potentials.

Currently displaying 601 – 620 of 897