Statistical mechanics of nonlinear wave equations
A suitable Liapunov function is constructed for proving that the unique critical point of a non-linear system of ordinary differential equations, considered in a well determined polyhedron , is globally asymptotically stable in . The analytic problem arises from an investigation concerning a steady state in a particular macromolecular system: the visual system represented by the pigment rhodopsin in the presence of light.
We obtain the existence and uniqueness of square-mean pseudo almost automorphic mild solutions to first-order partial neutral stochastic functional differential equations with Stepanov-like almost automorphic coefficients in a real separable Hilbert space.
We are concerned with first order set-valued problems with very general boundary value conditions involving the Stieltjes derivative with respect to a left-continuous nondecreasing function , a Carathéodory multifunction and a continuous . Using appropriate notions of lower and upper solutions, we prove the existence of solutions via a fixed point result for condensing mappings. In the periodic single-valued case, combining an existence theory for the linear case with a recent result involving...
A generalization of the Poisson driven stochastic differential equation is considered. A sufficient condition for asymptotic stability of a discrete time-nonhomogeneous Markov process is proved.
The definition and some existence theorems for stochastic differential inclusions depending only on selections theorems are given.
The definition and some existence theorems for stochastic differential inclusion dZₜ ∈ F(Zₜ)dXₜ, where F and X are set valued stochastic processes, are given.
We consider non-degenerate SDEs with a β-Hölder continuous and bounded drift term and driven by a Lévy noise L which is of α-stable type. If β > 1 - α/2 and α ∈ [1,2), we show pathwise uniqueness and existence of a stochastic flow. We follow the approach of [Priola, Osaka J. Math. 2012] improving the assumptions on the noise L. In our previous paper L was assumed to be non-degenerate, α-stable and symmetric. Here we can also recover relativistic and truncated stable processes and some classes...
In this work we compute the Stokes matrices of the ordinary differential equation satisfied by the hypergeometric integrals associated to an arrangement of hyperplanes in generic position. This generalizes the computation done by J.-P. Ramis for confluent hypergeometric functions, which correspond to the arrangement of two points on the line. The proof is based on an explicit description of a base of canonical solutions as integrals on the cones of the arrangement, and combinatorial relations between...
We precise the cohomological analysis of the Stokes phenomenon for linear differential systems due to Malgrange and Sibuya by making a rigid natural choice of a unique cocycle (called a Stokes cocyle) in every cohomological class. And we detail an algebraic algorithm to reduce any cocycle to its cohomologous Stokes form. This gives rise to an almost algebraic definition of sums for formal solutions of systems which we compare to the most usual ones. We also use this construction to the Stokes cocycle...