Five integral inequalities; an inheritance from Hardy and Littlewood.
We resolve the centre-focus problem for a specific class of cubic systems and determine the number of limit cycles which can bifurcate from a fine focus. We also describe the methods which we have developed to investigate these questions in general. These involve extensive use of Computer Algebra; we have chosen to use REDUCE.
The paper deals with the quasi-linear ordinary differential equation with . We treat the case when is not necessarily monotone in its second argument and assume usual conditions on and . We find necessary and sufficient conditions for the existence of unbounded non-oscillatory solutions. By means of a fixed point technique we investigate their growth, proving the coexistence of solutions with different asymptotic behaviors. The results generalize previous ones due to Elbert–Kusano, [Acta...
We consider a simple boundary value problem at resonance for an ordinary differential equation. We employ a shift argument and construct a regular fixed point operator. In contrast to current applications of coincidence degree, standard fixed point theorems are applied to give sufficient conditions for the existence of solutions. We provide three applications of fixed point theory. They are delicate and an application of the contraction mapping principle is notably missing. We give a partial explanation...
The purpose of this paper is to prove an existence result for a multivalued Cauchy problem using a fixed point theorem for a multivalued contraction on a generalized complete metric space.
This paper studies Monge parameterization, or differential flatness, of control-affine systems with four states and two controls. Some of them are known to be flat, and this implies admitting a Monge parameterization. Focusing on systems outside this class, we describe the only possible structure of such a parameterization for these systems, and give a lower bound on the order of this parameterization, if it exists. This lower-bound is good enough to recover the known results about “(x,u)-flatness”...