Regularity of potentials and removability of singularities of solutions of partial differential equations
Let (i = 1,2) be two arbitrary bounded operators on a Banach space. We study (C₁,C₂)-regularized cosine existence and uniqueness families and their relationship to second order abstract Cauchy problems. We also prove some of their basic properties. In addition, Hille-Yosida type sufficient conditions are given for the exponentially bounded case.
The common goal of systems pharmacology, i.e. systems biology applied to the field of pharmacology, is to rely less on trial and error in designing an input-output systems, e.g. therapeutic schedules. In this paper we present, on the paradigmatic example of a regulatory network of drug-induced enzyme production, the further development of the study published by Duintjer Tebbens et al. (2019) in the Applications of Mathematics. Here, the key feature is that the nonlinear model in form of an ODE system...
Dans cet article, nous montrons que la notion analytique d’exposants développée par Levelt pour les systèmes différentiels linéaires en une singularité régulière s’interprète algébriquement en termes d’invariants de réseaux, relatifs à un réseau stable maximal que nous appelons « réseau de Levelt ». Nous obtenons en particulier un encadrement pour la somme des exposants des systèmes n’ayant que des singularités régulières sur ).