Displaying 921 – 940 of 1670

Showing per page

On the existence of one-signed periodic solutions of some differential equations of second order

Jan Ligęza (2006)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We study the existence of one-signed periodic solutions of the equations x ' ' ( t ) - a 2 ( t ) x ( t ) + μ f ( t , x ( t ) , x ' ( t ) ) = 0 , x ' ' ( t ) + a 2 ( t ) x ( t ) = μ f ( t , x ( t ) , x ' ( t ) ) , where μ > 0 , a : ( - , + ) ( 0 , ) is continuous and 1-periodic, f is a continuous and 1-periodic in the first variable and may take values of different signs. The Krasnosielski fixed point theorem on cone is used.

On the existence of optimal controls for nonlinear infinite dimensional systems

Antonella Fiacca, Nikolaos S. Papageorgiou, Francesca Papalini (1998)

Czechoslovak Mathematical Journal

We consider nonlinear systems with a priori feedback. We establish the existence of admissible pairs and then we show that the Lagrange optimal control problem admits an optimal pair. As application we work out in detail two examples of optimal control problems for nonlinear parabolic partial differential equations.

On the Existence of Optimal Solutions for Infinite Horizon Optimal Control Problems: Nonconvex and Multicriteria Problems

Dean A. Carlson (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa Nota si continua la discussione iniziata in [4] dell'esistenza di soluzioni ottimali per problemi di ottimo controllo in [ 0 + ] . Si definiscono problemi generalizzati, e si ottengono estensioni di risultati già presentati in [4]. Si dimostrano anche varie relazioni tra le soluzioni ottimali dei problemi generalizzati e i problemi originali e non convessi di ottimo controllo. Alla fine si considerano problemi lineari nelle variabili di stato anche nel caso di costi funzionali a valori vettoriali...

On the existence of oscillatory solutions in the Weisbuch-Salomon-Atlan model for the Belousov-Zhabotinskij reaction

Valter Šeda (1978)

Aplikace matematiky

The stability properties of solutions of the differential system which represents the considered model for the Belousov - Zhabotinskij reaction are studied in this paper. The existence of oscillatory solutions of this system is proved and a theorem on separation of zero-points of the components of such solutions is established. It is also shown that there exists a periodic solution.

On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE

Martin Rohleder (2012)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The paper investigates the singular initial problem[4pt] ( p ( t ) u ' ( t ) ) ' + q ( t ) f ( u ( t ) ) = 0 , u ( 0 ) = u 0 , u ' ( 0 ) = 0 [4pt] on the half-line [ 0 , ) . Here u 0 [ L 0 , L ] , where L 0 , 0 and L are zeros of f , which is locally Lipschitz continuous on . Function p is continuous on [ 0 , ) , has a positive continuous derivative on ( 0 , ) and p ( 0 ) = 0 . Function q is continuous on [ 0 , ) and positive on ( 0 , ) . For specific values u 0 we prove the existence and uniqueness of damped solutions of this problem. With additional conditions for f , p and q it is shown that the problem has for each specified u 0 a unique...

On the existence of periodic solutions for nonconvex differential inclusions

Dimitrios Kravvaritis, Nikolaos S. Papageorgiou (1996)

Archivum Mathematicum

Using a Nagumo type tangential condition and a recent theorem on the existence of directionally continuous selector for a lower semicontinuous multifunctions, we establish the existence of periodic trajectories for nonconvex differential inclusions.

Currently displaying 921 – 940 of 1670