Bilinear systems and chaos
The well-known bottleneck of systems pharmacology, i. e., systems biology applied to pharmacology, refers to the model parameters determination from experimentally measured datasets. This paper represents the development of our earlier studies devoted to inverse (ill-posed) problems of model parameters identification. The key feature of this research is the introduction of control (or periodic forcing by an input signal being a drug intake) of the nonlinear model of drug-induced enzyme production...
We discuss the effect of time delay on blow-up of solutions to initial-boundary value problems for nonlinear reaction-diffusion equations. Firstly, two examples are given, which indicate that the delay can both induce and prevent the blow-up of solutions. Then we show that adding a new term with delay may not change the blow-up character of solutions.
The solvability of second order differential systems with the classical separated or periodic boundary conditions is considered. The proofs use special classes of curvature bound sets or bound sets together with the simplest version of the Leray-Schauder continuation theorem. The special cases where the bound set is a ball, a parallelotope or a bounded convex set are considered.
We provide a systematic study of boundary data maps, that is, 2 × 2 matrix-valued Dirichlet-to-Neumann and more generally, Robin-to-Robin maps, associated with one-dimensional Schrödinger operators on a compact interval [0, R] with separated boundary conditions at 0 and R. Most of our results are formulated in the non-self-adjoint context. Our principal results include explicit representations of these boundary data maps in terms of the resolvent...
This paper deals with the three-point boundary value problem for the nonlinear singularly perturbed second-order systems. Especially, we focus on an analysis of the solutions in the right endpoint of considered interval from an appearance of the boundary layer point of view. We use the method of lower and upper solutions combined with analysis of the integral equation associated with the class of nonlinear systems considered here.
Boundary value problems for generalized Lyapunov equations whose coefficients are time-dependant bounded linear operators defined on a separable complex Hilbert space are studied. Necessary and sufficient conditions for the existence of solutions and explicit expressions of them are given.