Boundary value methods for the solution of differential-algebraic equations.
The concept of measures of noncompactness is applied to prove the existence of a solution for a boundary value problem for an infinite system of second order differential equations in space. We change the boundary value problem into an equivalent system of infinite integral equations and result is obtained by using Darbo’s type fixed point theorem. The result is illustrated with help of an example.
The paper deals with the multivalued boundary value problem for a.a. , , in a separable, reflexive Banach space . The nonlinearity is weakly upper semicontinuous in . We prove the existence of global solutions in the Sobolev space with endowed with the weak topology. We consider the case of multiple solutions of the associated homogeneous linearized problem. An example completes the discussion.
We present some existence and uniqueness result for a boundary value problem for functional differential equations of second order with impulses at fixed points.
In this paper we investigate the problem of existence and asymptotic behavior of solutions for the nonlinear boundary value problem satisfying three point boundary conditions. Our analysis relies on the method of lower and upper solutions and delicate estimations.
We consider boundary value problems for semilinear evolution inclusions. We establish the existence of extremal solutions. Using that result, we show that the evolution inclusion has periodic extremal trajectories. These results are then applied to closed loop control systems. Finally, an example of a semilinear parabolic distributed parameter control system is worked out in detail.
In this article, we study the existence of solutions in a Banach space of boundary value problems for Caputo-Hadamard fractional differential inclusions of order .
In this paper we obtain existence conditions and an explicit closed form expression of the general solution of twopoint boundary value problems for coupled systems of second order differential equations with a singularity of the first kind. The approach is algebraic and is based on a matrix representation of the system as a second order Euler matrix differential equation that avoids the increase of the problem dimension derived from the standard reduction of the order method.
In this paper, we shall establish sufficient conditions for the existence of solutions for a boundary value problem for fractional differential inclusions. Both cases of convex valued and nonconvex valued right hand sides are considered.