Displaying 401 – 420 of 2827

Showing per page

Bessel matrix differential equations: explicit solutions of initial and two-point boundary value problems

Enrique Navarro, Rafael Company, Lucas Jódar (1993)

Applicationes Mathematicae

In this paper we consider Bessel equations of the type t 2 X ( 2 ) ( t ) + t X ( 1 ) ( t ) + ( t 2 I - A 2 ) X ( t ) = 0 , where A is an n × n complex matrix and X(t) is an n × m matrix for t > 0. Following the ideas of the scalar case we introduce the concept of a fundamental set of solutions for the above equation expressed in terms of the data dimension. This concept allows us to give an explicit closed form solution of initial and two-point boundary value problems related to the Bessel equation.

Bifurcation of periodic and chaotic solutions in discontinuous systems

Michal Fečkan (1998)

Archivum Mathematicum

Chaos generated by the existence of Smale horseshoe is the well-known phenomenon in the theory of dynamical systems. The Poincaré-Andronov-Melnikov periodic and subharmonic bifurcations are also classical results in this theory. The purpose of this note is to extend those results to ordinary differential equations with multivalued perturbations. We present several examples based on our recent achievements in this direction. Singularly perturbed problems are studied as well. Applications are given...

Bifurcation of periodic solutions in differential inclusions

Michal Fečkan (1997)

Applications of Mathematics

Ordinary differential inclusions depending on small parameters are considered such that the unperturbed inclusions are ordinary differential equations possessing manifolds of periodic solutions. Sufficient conditions are determined for the persistence of some of these periodic solutions after multivalued perturbations. Applications are given to dry friction problems.

Bifurcation of periodic solutions to variational inequalities in κ based on Alexander-Yorke theorem

Milan Kučera (1999)

Czechoslovak Mathematical Journal

Variational inequalities U ( t ) K , ( U ˙ ( t ) - B λ U ( t ) - G ( λ , U ( t ) ) , Z - U ( t ) ) 0 for all Z K , a.a. t [ 0 , T ) are studied, where K is a closed convex cone in κ , κ 3 , B λ is a κ × κ matrix, G is a small perturbation, λ a real parameter. The assumptions guaranteeing a Hopf bifurcation at some λ 0 for the corresponding equation are considered and it is proved that then, in some situations, also a bifurcation of periodic solutions to our inequality occurs at some λ I λ 0 . Bifurcating solutions are obtained by the limiting process along branches of solutions to penalty problems starting at λ 0 constructed...

Biochemical network of drug-induced enzyme production: Parameter estimation based on the periodic dosing response measurement

Volodymyr Lynnyk, Štěpán Papáček, Branislav Rehák (2021)

Kybernetika

The well-known bottleneck of systems pharmacology, i. e., systems biology applied to pharmacology, refers to the model parameters determination from experimentally measured datasets. This paper represents the development of our earlier studies devoted to inverse (ill-posed) problems of model parameters identification. The key feature of this research is the introduction of control (or periodic forcing by an input signal being a drug intake) of the nonlinear model of drug-induced enzyme production...

Boundary Data Maps for Schrödinger Operators on a Compact Interval

S. Clark, F. Gesztesy, M. Mitrea (2010)

Mathematical Modelling of Natural Phenomena

We provide a systematic study of boundary data maps, that is, 2 × 2 matrix-valued Dirichlet-to-Neumann and more generally, Robin-to-Robin maps, associated with one-dimensional Schrödinger operators on a compact interval [0, R] with separated boundary conditions at 0 and R. Most of our results are formulated in the non-self-adjoint context. Our principal results include explicit representations of these boundary data maps in terms of the resolvent...

Boundary layer phenomenon for three -point boundary value problem for the nonlinear singularly perturbed systems

Robert Vrabel (2011)

Kybernetika

This paper deals with the three-point boundary value problem for the nonlinear singularly perturbed second-order systems. Especially, we focus on an analysis of the solutions in the right endpoint of considered interval from an appearance of the boundary layer point of view. We use the method of lower and upper solutions combined with analysis of the integral equation associated with the class of nonlinear systems considered here.

Boundary value problem for an infinite system of second order differential equations in p spaces

Ishfaq Ahmad Malik, Tanweer Jalal (2020)

Mathematica Bohemica

The concept of measures of noncompactness is applied to prove the existence of a solution for a boundary value problem for an infinite system of second order differential equations in p space. We change the boundary value problem into an equivalent system of infinite integral equations and result is obtained by using Darbo’s type fixed point theorem. The result is illustrated with help of an example.

Boundary value problem for differential inclusions in Fréchet spaces with multiple solutions of the homogeneous problem

Irene Benedetti, Luisa Malaguti, Valentina Taddei (2011)

Mathematica Bohemica

The paper deals with the multivalued boundary value problem x ' A ( t , x ) x + F ( t , x ) for a.a. t [ a , b ] , M x ( a ) + N x ( b ) = 0 , in a separable, reflexive Banach space E . The nonlinearity F is weakly upper semicontinuous in x . We prove the existence of global solutions in the Sobolev space W 1 , p ( [ a , b ] , E ) with 1 < p < endowed with the weak topology. We consider the case of multiple solutions of the associated homogeneous linearized problem. An example completes the discussion.

Boundary value problems and periodic solutions for semilinear evolution inclusions

Nikolaos S. Papageorgiou (1994)

Commentationes Mathematicae Universitatis Carolinae

We consider boundary value problems for semilinear evolution inclusions. We establish the existence of extremal solutions. Using that result, we show that the evolution inclusion has periodic extremal trajectories. These results are then applied to closed loop control systems. Finally, an example of a semilinear parabolic distributed parameter control system is worked out in detail.

Boundary value problems for coupled systems of second order differential equations with a singularity of the first kind: explicit solutions

Lucas Jódar (1994)

Applications of Mathematics

In this paper we obtain existence conditions and an explicit closed form expression of the general solution of twopoint boundary value problems for coupled systems of second order differential equations with a singularity of the first kind. The approach is algebraic and is based on a matrix representation of the system as a second order Euler matrix differential equation that avoids the increase of the problem dimension derived from the standard reduction of the order method.

Currently displaying 401 – 420 of 2827