Displaying 141 – 160 of 246

Showing per page

Existence of positive solution of a singular partial differential equation

Shu Qin Zhang (2008)

Mathematica Bohemica

Motivated by Vityuk and Golushkov (2004), using the Schauder Fixed Point Theorem and the Contraction Principle, we consider existence and uniqueness of positive solution of a singular partial fractional differential equation in a Banach space concerning with fractional derivative.

Existence of positive solutions for a fractional boundary value problem with lower-order fractional derivative dependence on the half-line

Amina Boucenna, Toufik Moussaoui (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The aim of this paper is to study the existence of solutions to a boundary value problem associated to a nonlinear fractional differential equation where the nonlinear term depends on a fractional derivative of lower order posed on the half-line. An appropriate compactness criterion and suitable Banach spaces are used and so a fixed point theorem is applied to obtain fixed points which are solutions of our problem.

Existence of quasilinear relaxation shock profiles in systems with characteristic velocities

Guy Métivier, Benjamin Texier, Kevin Zumbrun (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

We revisit the existence problem for shock profiles in quasilinear relaxation systems in the case that the velocity is a characteristic mode, implying that the profile ODE is degenerate. Our result states existence, with sharp rates of decay and distance from the Chapman–Enskog approximation, of small-amplitude quasilinear relaxation shocks. Our method of analysis follows the general approach used by Métivier and Zumbrun in the semilinear case, based on Chapman–Enskog expansion and the macro–micro...

Existence of solutions and of multiple solutions for nonlinear nonsmooth periodic systems

Evgenia H. Papageorgiou, Nikolaos S. Papageorgiou (2004)

Czechoslovak Mathematical Journal

In this paper we examine nonlinear periodic systems driven by the vectorial p -Laplacian and with a nondifferentiable, locally Lipschitz nonlinearity. Our approach is based on the nonsmooth critical point theory and uses the subdifferential theory for locally Lipschitz functions. We prove existence and multiplicity results for the “sublinear” problem. For the semilinear problem (i.e. p = 2 ) using a nonsmooth multidimensional version of the Ambrosetti-Rabinowitz condition, we prove an existence theorem...

Existence of solutions for fractional differential inclusions with nonlocal Riemann-Liouville integral boundary conditions

Bashir Ahmad, Sotiris Ntouyas (2014)

Mathematica Bohemica

In this paper, we discuss the existence of solutions for a boundary value problem of fractional differential inclusions with nonlocal Riemann-Liouville integral boundary conditions. Our results include the cases when the multivalued map involved in the problem is (i) convex valued, (ii) lower semicontinuous with nonempty closed and decomposable values and (iii) nonconvex valued. In case (i) we apply a nonlinear alternative of Leray-Schauder type, in the second case we combine the nonlinear alternative...

Existence of solutions for hyperbolic differential inclusions in Banach spaces

Nikolaos S. Papageorgiou (1992)

Archivum Mathematicum

In this paper we examine nonlinear hyperbolic inclusions in Banach spaces. With the aid of a compactness condition involving the ball measure of noncompactness we prove two existence theorems. The first for problems with convex valued orientor fields and the second for problems with nonconvex valued ones.

Currently displaying 141 – 160 of 246