Displaying 101 – 120 of 209

Showing per page

A simple mathematical model of the human liver

Lenka Čelechovská (2004)

Applications of Mathematics

The parameter estimation problem for a continuous dynamical system is a difficult one. In this paper we study a simple mathematical model of the liver. For the parameter identification we use the observed clinical data obtained by the BSP test. Bellman’s quasilinearization method and its modifications are applied.

A study of an operator arising in the theory of circular plates

Leopold Herrmann (1988)

Aplikace matematiky

The operator L 0 : D L 0 H H , L 0 u = 1 r d d r r d d r 1 r d d r r d u d r , D L 0 = { u C 4 ( [ 0 , R ] ) , u ' ( 0 ) = u ' ' ' ' ( 0 ) = 0 , u ( R ) = u ' ( R ) = 0 } , H = L 2 , r ( 0 , R ) is shown to be essentially self-adjoint, positive definite with a compact resolvent. The conditions on L 0 (in fact, on a general symmetric operator) are given so as to justify the application of the Fourier method for solving the problems of the types L 0 u = g and u t t + L 0 u = g , respectively.

A study of second order differential inclusions with four-point integral boundary conditions

Bashir Ahmad, Sotiris K. Ntouyas (2011)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we discuss the existence of solutions for a four-point integral boundary value problem of second order differential inclusions involving convex and non-convex multivalued maps. The existence results are obtained by applying the nonlinear alternative of Leray Schauder type and some suitable theorems of fixed point theory.

A Sturm-Liouville problem with spectral and large parameters in boundary conditions and the associated Cauchy problem

Jamel Ben Amara (2011)

Colloquium Mathematicae

We study a Sturm-Liouville problem containing a spectral parameter in the boundary conditions. We associate to this problem a self-adjoint operator in a Pontryagin space Π₁. Using this operator-theoretic formulation and analytic methods, we study the asymptotic behavior of the eigenvalues under the variation of a large physical parameter in the boundary conditions. The spectral analysis is applied to investigate the well-posedness and stability of the wave equation of a string.

A survey and some new results on the existence of solutions of IPBVPs for first order functional differential equations

Yuji Liu (2009)

Applications of Mathematics

This paper deals with the periodic boundary value problem for nonlinear impulsive functional differential equation x ' ( t ) = f ( t , x ( t ) , x ( α 1 ( t ) ) , , x ( α n ( t ) ) ) for a.e. t [ 0 , T ] , Δ x ( t k ) = I k ( x ( t k ) ) , k = 1 , , m , x ( 0 ) = x ( T ) . We first present a survey and then obtain new sufficient conditions for the existence of at least one solution by using Mawhin’s continuation theorem. Examples are presented to illustrate the main results.

Currently displaying 101 – 120 of 209