Complete polynomial vector fields in simplexes with application to evolutionary dynamics.
In order to further understand a complex 3-D dynamical system proposed by Qi et al, showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system.
An eco-epidemiological model of susceptible Tilapia fish, infected Tilapia fish and Pelicans is investigated by several author based upon the work initiated by Chattopadhyay and Bairagi (Ecol. Model., 136, 103–112, 2001). In this paper, we investigate the dynamics of the same model by considering different parameters involved with the model as bifurcation parameters in details. Considering the intrinsic growth rate of susceptible Tilapia fish as bifurcation parameter, we demonstrate the period doubling...
Hopf bifurcation, dynamics at infinity and robust modified function projective synchronization (RMFPS) problem for Sprott E system with quadratic perturbation were studied in this paper. By using the method of projection for center manifold computation, the subcritical and the supercritical Hopf bifurcation were analyzed and obtained. Then, in accordance with the Poincare compactification of polynomial vector field in , the dynamical behaviors at infinity were described completely. Moreover, a...
This paper is devoted to the study of a predator-prey model in a patchy environment. The model represents the interactions between phytoplankton and zooplankton in the water column. Two patches are considered with respect to light availability: one patch is associated to the surface layer, the second patch describes the bottom layer. We show that this spatial heterogeneity may destabilize the predator-prey system, even in oligotrophic system where the nutrient is low enough to avoid ”paradox-enrichment”...
We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems where , , is a bifurcation parameter, is an evolution parameter, and is either or . We prove that the corresponding bifurcation curve is -shape. Thus, the exact multiplicity of positive solutions can be obtained.
A bifurcation problem for variational inequalities is studied, where is a closed convex cone in , , is a matrix, is a small perturbation, a real parameter. The main goal of the paper is to simplify the assumptions of the abstract results concerning the existence of a bifurcation of periodic solutions developed in the previous paper and to give examples in more than three dimensional case.
We consider the nonlinear Dirichlet problem and develop conditions for the function such that the considered problem has a positive classical solution. Moreover, we present some results showing that is a bifurcation point in and in .