Displaying 41 – 60 of 139

Showing per page

Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system

Hongtao Liang, Yanxia Tang, Li Li, Zhouchao Wei, Zhen Wang (2013)

Kybernetika

In order to further understand a complex 3-D dynamical system proposed by Qi et al, showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system.

Deterministic Chaos vs. Stochastic Fluctuation in an Eco-epidemic Model

P.S. Mandal, M. Banerjee (2012)

Mathematical Modelling of Natural Phenomena

An eco-epidemiological model of susceptible Tilapia fish, infected Tilapia fish and Pelicans is investigated by several author based upon the work initiated by Chattopadhyay and Bairagi (Ecol. Model., 136, 103–112, 2001). In this paper, we investigate the dynamics of the same model by considering different parameters involved with the model as bifurcation parameters in details. Considering the intrinsic growth rate of susceptible Tilapia fish as bifurcation parameter, we demonstrate the period doubling...

Dynamics analysis and robust modified function projective synchronization of Sprott E system with quadratic perturbation

Zhen Wang, Wei Sun, Zhouchao Wei, Xiaojian Xi (2014)

Kybernetika

Hopf bifurcation, dynamics at infinity and robust modified function projective synchronization (RMFPS) problem for Sprott E system with quadratic perturbation were studied in this paper. By using the method of projection for center manifold computation, the subcritical and the supercritical Hopf bifurcation were analyzed and obtained. Then, in accordance with the Poincare compactification of polynomial vector field in R 3 , the dynamical behaviors at infinity were described completely. Moreover, a...

Enrichment Paradox Induced by Spatial Heterogeneity in a Phytoplankton - Zooplankton System

J.-C. Poggiale, M. Gauduchon, P. Auger (2008)

Mathematical Modelling of Natural Phenomena

This paper is devoted to the study of a predator-prey model in a patchy environment. The model represents the interactions between phytoplankton and zooplankton in the water column. Two patches are considered with respect to light availability: one patch is associated to the surface layer, the second patch describes the bottom layer. We show that this spatial heterogeneity may destabilize the predator-prey system, even in oligotrophic system where the nutrient is low enough to avoid ”paradox-enrichment”...

Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems

Shao-Yuan Huang, Ping-Han Hsieh (2023)

Czechoslovak Mathematical Journal

We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems - [ φ ( u ' ) ] ' = λ u p 1 - u N in ( - L , L ) , u ( - L ) = u ( L ) = 0 , where p > 1 , N > 0 , λ > 0 is a bifurcation parameter, L > 0 is an evolution parameter, and φ ( u ) is either φ ( u ) = u or φ ( u ) = u / 1 - u 2 . We prove that the corresponding bifurcation curve is -shape. Thus, the exact multiplicity of positive solutions can be obtained.

Examples of bifurcation of periodic solutions to variational inequalities in κ

Milan Kučera (2000)

Czechoslovak Mathematical Journal

A bifurcation problem for variational inequalities U ( t ) K , ( U ˙ ( t ) - B λ U ( t ) - G ( λ , U ( t ) ) , Z - U ( t ) ) 0 for all Z K , a.a. t 0 is studied, where K is a closed convex cone in κ , κ 3 , B λ is a κ × κ matrix, G is a small perturbation, λ a real parameter. The main goal of the paper is to simplify the assumptions of the abstract results concerning the existence of a bifurcation of periodic solutions developed in the previous paper and to give examples in more than three dimensional case.

Existence and bifurcation results for a class of nonlinear boundary value problems in ( 0 , )

Wolfgang Rother (1991)

Commentationes Mathematicae Universitatis Carolinae

We consider the nonlinear Dirichlet problem - u ' ' - r ( x ) | u | σ u = λ u in ( 0 , ) , u ( 0 ) = 0 and lim x u ( x ) = 0 , and develop conditions for the function r such that the considered problem has a positive classical solution. Moreover, we present some results showing that λ = 0 is a bifurcation point in W 1 , 2 ( 0 , ) and in L p ( 0 , ) ( 2 p ) .

Currently displaying 41 – 60 of 139