Displaying 201 – 220 of 584

Showing per page

Modeling the role of constant and time varying recycling delay on an ecological food chain

Banibrata Mukhopadhyay, Rakhi Bhattacharyya (2010)

Applications of Mathematics

We consider a mathematical model of nutrient-autotroph-herbivore interaction with nutrient recycling from both autotroph and herbivore. Local and global stability criteria of the model are studied in terms of system parameters. Next we incorporate the time required for recycling of nutrient from herbivore as a constant discrete time delay. The resulting DDE model is analyzed regarding stability and bifurcation aspects. Finally, we assume the recycling delay in the oscillatory form to model the...

Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions

Ming-Xing Wang, Alberto Cabada, Juan J. Nieto (1993)

Annales Polonici Mathematici

The purpose of this paper is to study the periodic boundary value problem -u''(t) = f(t,u(t),u'(t)), u(0) = u(2π), u'(0) = u'(2π) when f satisfies the Carathéodory conditions. We show that a generalized upper and lower solution method is still valid, and develop a monotone iterative technique for finding minimal and maximal solutions.

Monotonicity of the period function for some planar differential systems. Part I: Conservative and quadratic systems

A. Raouf Chouikha (2005)

Applicationes Mathematicae

We first examine conditions implying monotonicity of the period function for potential systems with a center at 0 (in the whole period annulus). We also present a short comparative survey of the different criteria. We apply these results to quadratic Loud systems ( L D , F ) for various values of the parameters D and F. In the case of noncritical periods we propose an algorithm to test the monotonicity of the period function for ( L D , F ) . Our results may be viewed as a contribution to proving (or disproving) a conjecture...

Monotonicity of the period function for some planar differential systems. Part II: Liénard and related systems

A. Raouf Chouikha (2005)

Applicationes Mathematicae

We are interested in conditions under which the two-dimensional autonomous system ẋ = y, ẏ = -g(x) - f(x)y, has a local center with monotonic period function. When f and g are (non-odd) analytic functions, Christopher and Devlin [C-D] gave a simple necessary and sufficient condition for the period to be constant. We propose a simple proof of their result. Moreover, in the case when f and g are of class C³, the Liénard systems can have a monotonic period function...

Multiple periodic solutions for Hamiltonian systems with singular potential

Addolorata Salvatore (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this Note we prove the existence of infinitely many periodic solutions of prescribed period for a Hamiltonian system with a singular potential.

Multiple positive solutions of a nonlinear fourth order periodic boundary value problem

Lingbin Kong, Daqing Jiang (1998)

Annales Polonici Mathematici

The fourth order periodic boundary value problem u ( 4 ) - m u + F ( t , u ) = 0 , 0 < t < 2π, with u ( i ) ( 0 ) = u ( i ) ( 2 π ) , i = 0,1,2,3, is studied by using the fixed point index of mappings in cones, where F is a nonnegative continuous function and 0 < m < 1. Under suitable conditions on F, it is proved that the problem has at least two positive solutions if m ∈ (0,M), where M is the smallest positive root of the equation tan mπ = -tanh mπ, which takes the value 0.7528094 with an error of ± 10 - 7 .

Currently displaying 201 – 220 of 584