Displaying 121 – 140 of 584

Showing per page

Dynamics in a discrete predator-prey system with infected prey

Changjin Xu, Peiluan Li (2014)

Mathematica Bohemica

In this paper, a discrete version of continuous non-autonomous predator-prey model with infected prey is investigated. By using Gaines and Mawhin's continuation theorem of coincidence degree theory and the method of Lyapunov function, some sufficient conditions for the existence and global asymptotical stability of positive periodic solution of difference equations in consideration are established. An example shows the feasibility of the main results.

Error analysis of splitting methods for semilinear evolution equations

Masahito Ohta, Takiko Sasaki (2017)

Applications of Mathematics

We consider a Strang-type splitting method for an abstract semilinear evolution equation t u = A u + F ( u ) . Roughly speaking, the splitting method is a time-discretization approximation based on the decomposition of the operators A and F . Particularly, the Strang method is a popular splitting method and is known to be convergent at a second order rate for some particular ODEs and PDEs. Moreover, such estimates usually address the case of splitting the operator into two parts. In this paper, we consider the splitting...

Existence and exponential stability of a periodic solution for fuzzy cellular neural networks with time-varying delays

Qianhong Zhang, Lihui Yang, Daixi Liao (2011)

International Journal of Applied Mathematics and Computer Science

Fuzzy cellular neural networks with time-varying delays are considered. Some sufficient conditions for the existence and exponential stability of periodic solutions are obtained by using the continuation theorem based on the coincidence degree and the differential inequality technique. The sufficient conditions are easy to use in pattern recognition and automatic control. Finally, an example is given to show the feasibility and effectiveness of our methods.

Existence and positivity of solutions for a nonlinear periodic differential equation

Ernest Yankson (2012)

Archivum Mathematicum

We study the existence and positivity of solutions of a highly nonlinear periodic differential equation. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ a modification of Krasnoselskii’s fixed point theorem introduced by T. A. Burton ([4], Theorem 3) to show the existence and positivity of solutions of the equation.

Existence and uniqueness of periodic solutions for odd-order ordinary differential equations

Yongxiang Li, He Yang (2011)

Annales Polonici Mathematici

The paper deals with the existence and uniqueness of 2π-periodic solutions for the odd-order ordinary differential equation u ( 2 n + 1 ) = f ( t , u , u ' , . . . , u ( 2 n ) ) , where f : × 2 n + 1 is continuous and 2π-periodic with respect to t. Some new conditions on the nonlinearity f ( t , x , x , . . . , x 2 n ) to guarantee the existence and uniqueness are presented. These conditions extend and improve the ones presented by Cong [Appl. Math. Lett. 17 (2004), 727-732].

Currently displaying 121 – 140 of 584