Sur quelques applications des dispersions centrales dans la théorie des équations différentielles linéaires du deuxième ordre
Nous considérons les champs de vecteurs analytiques de de partie linéaire diagonale non nulle et dont les valeurs propres vérifient des relations de résonances toutes engendrées par une seule relation pour un certain vecteur non nul. Nous montrons que, dans un système de coordonnées locales holomorphes au voisinages de , de tels champs de vecteurs se “mettent" sous une forme normale partielle, tout en exhibant des variétés invariantes, si l’on fait une hypothèse de petits diviseurs diophantiens....
En rapport avec le problème du retard a la bifurcation, la notion de solution surstable est définie pour une famille d’équations différentielles analytiques avec un petit paramètre. Un théorème d’existence des solutions surstables est démontré pour des valeurs exceptionnelles d’un paramètre de contrôle. L’outil principal de la démonstration est un théorème de sommation qui constitue une généralisation d’un résultat de A. I. Neishtadt.
This paper investigates adaptive switched modified function projective synchronization between two complex nonlinear hyperchaotic systems with unknown parameters. Based on adaptive control and parameter identification, corresponding adaptive controllers with appropriate parameter update laws are constructed to achieve switched modified function projective synchronization between two different complex nonlinear hyperchaotic systems and to estimate the unknown system parameters. A numerical simulation...
The canonical form theorem, applied to a certain group of symmetry transformations of certain Fuchsian equations, leads automatically to the integration of them. The result can be extended to any n-order differential equation possesing a certain pointlike group of symmetries with a maximal abelian Lie-subgroup of order c.
In this paper, we propose a new approach of designing a controller and an update rule of unknown parameters for synchronizing fractional-order system with multiple delays and prove the correctness of the approach according to the fractional Lyapunov stable theorem. Based on the proposed approach, synchronizing fractional delayed chaotic system with and without unknown parameters is realized. Numerical simulations are carried out to confirm the effectiveness of the approach.
Synchronization with error bound of two non-identical forced oscillators is studied in the paper. By introducing two auxiliary autonomous systems, differential inequality technique and active control technique are used to deal with the synchronization of two non-identical forced oscillators with parameter mismatch in external harmonic excitations. Numerical simulations show the effectiveness of the proposed method.
Lorsque tous les champs caractéristiques d’un système hyperbolique riche sont linéairement dégénérés, les opérateurs résolvants sont bien définis et opèrent sur l’ensemble des solutions de certains systèmes d’équations différentielles ordinaires. Celles-ci peuvent être implicites ou explicites. Dans le cas implicite, on montre que toutes les solutions sont presque-périodiques; de plus elles seront toutes périodiques pourvu que l’une d’entre elles le soit. Dans le cas explicite, on définit un opérateur...