Displaying 2001 – 2020 of 2549

Showing per page

Solution of the 1 : −2 resonant center problem in the quadratic case

Alexandra Fronville, Anton Sadovski, Henryk Żołądek (1998)

Fundamenta Mathematicae

The 1:-2 resonant center problem in the quadratic case is to find necessary and sufficient conditions (on the coefficients) for the existence of a local analytic first integral for the vector field ( x + A 1 x 2 + B 1 x y + C y 2 ) x + ( - 2 y + D x 2 + A 2 x y + B 2 y 2 ) y . There are twenty cases of center. Their necessity was proved in [4] using factorization of polynomials with integer coefficients modulo prime numbers. Here we show that, in each of the twenty cases found in [4], there is an analytic first integral. We develop a new method of investigation of analytic...

Solutions non oscillantes d’une équation différentielle et corps de Hardy

François Blais, Robert Moussu, Fernando Sanz (2007)

Annales de l’institut Fourier

Soit ϕ : x ϕ ( x ) , x 0 une solution à l’infini d’une équation différentielle algébrique d’ordre n , P ( x , y , y , ... , y ( n ) ) = 0 . Nous donnons un critère géométrique pour que les germes à l’infini de ϕ et de la fonction identité sur appartiennent à un même corps de Hardy. Ce critère repose sur le concept de non oscillation.

Solutions of Riemann–Weber type half-linear differential equation

Ondřej Došlý (2017)

Archivum Mathematicum

We establish an asymptotic formula for a pair of linearly independent solutions of the subcritical Riemann–Weber type half-linear differential equation. We also complement the results of the author and M. Ünal, Acta Math. Hungar. 120 (2008), 147–163, where the equation was considered in the critical case.

Solvability of a forced autonomous Duffing's equation with periodic boundary conditions in the presence of damping

Chaitan P. Gupta (1993)

Applications of Mathematics

Let g : 𝐑 𝐑 be a continuous function, e : [ 0 , 1 ] 𝐑 a function in L 2 [ 0 , 1 ] and let c 𝐑 , c 0 be given. It is proved that Duffing’s equation u ' ' + c u ' + g ( u ) = e ( x ) , 0 < x < 1 , u ( 0 ) = u ( 1 ) , u ' ( 0 ) = u ' ( 1 ) in the presence of the damping term has at least one solution provided there exists an 𝐑 > 0 such that g ( u ) u 0 for | u | 𝐑 and 0 1 e ( x ) d x = 0 . It is further proved that if g is strictly increasing on 𝐑 with lim u - g ( u ) = - , lim u g ( u ) = and it Lipschitz continuous with Lipschitz constant α < 4 π 2 + c 2 , then Duffing’s equation given above has exactly one solution for every e L 2 [ 0 , 1 ] .

Currently displaying 2001 – 2020 of 2549