Displaying 141 – 160 of 497

Showing per page

Explicit solutions for Sturm-Liouville operator problems (II).

Lucas Jódar Sánchez (1987)

Stochastica

It is proved that the resolution problem of a Sturm-Liouville operator problem for a second-order differential operator equation with constant coefficients is solved in terms of solutions of the corresponding algebraic operator equation. Existence and uniqueness conditions for the existence of nontrivial solutions of the problem and explicit expressions of them are given.

Friedrichs extension of operators defined by linear Hamiltonian systems on unbounded interval

Roman Šimon Hilscher, Petr Zemánek (2010)

Mathematica Bohemica

In this paper we consider a linear operator on an unbounded interval associated with a matrix linear Hamiltonian system. We characterize its Friedrichs extension in terms of the recessive system of solutions at infinity. This generalizes a similar result obtained by Marletta and Zettl for linear operators defined by even order Sturm-Liouville differential equations.

Generalized Gaudin models and Riccatians

Aleksander Ushveridze (1996)

Banach Center Publications

The systems of differential equations whose solutions exactly coincide with Bethe ansatz solutions for generalized Gaudin models are constructed. These equations are called the generalized spectral ( 1 ) Riccati equations, because the simplest equation of this class has a standard Riccatian form. The general form of these equations is R n i [ z 1 ( λ ) , . . . , z r ( λ ) ] = c n i ( λ ) , i=1,..., r, where R n i denote some homogeneous polynomials of degrees n i constructed from functional variables z i ( λ ) and their derivatives. It is assumed that d e g k z i ( λ ) = k + 1 . The problem...

Currently displaying 141 – 160 of 497