Eine Bemerkung zur lokalen Werteverteilung der Lösungen linearer Differentialgleichungen.
Dettweiler and Reiter formulated Euler's integral transformation for Fuchsian systems of differential equations and applied it to a definition of the middle convolution. In this paper, we formulate Euler's integral transformation for systems of linear differential equations with irregular singularities. We show by an example that the confluence of singularities is compatible with Euler's integral transformation.
We consider the Knizhnik-Zamolodchikov system of linear differential equations. The coefficients of this system are rational functions generated by elements of the symmetric group n. We assume that parameter ρ = ±1. In previous paper [5] we proved that the fundamental solution of the corresponding KZ-equation is rational. Now we construct this solution in the explicit form.
On démontre ici un lemme de Hensel pour les opérateurs différentiels. On en déduit un théorème de factorisation pour des opérateurs différentiels à coefficients dans une extension liouvillienne transcendante d’un corps valué. On obtient en particulier un théorème de factorisation pour des opérateurs différentiels à coefficients dans une extension de par un nombre fini d’exponentielles et de logarithmes algébriquement indépendants sur .
This paper is a sequel to [vdP-Sa] and [vdP]. The two classes of differential modules (0,-,3/2) and (-,-,3), related to PII, are interpreted as fine moduli spaces. It is shown that these moduli spaces coincide with the Okamoto-Painlevé spaces for the given parameters. The geometry of the moduli spaces leads to a proof of the Painlevé property for PII in standard form and in the Flaschka-Newell form. The Bäcklund transformations, the rational solutions and the Riccati solutions for PII are derived...