Page 1

Displaying 1 – 17 of 17

Showing per page

Regular coordinates and reduction of deformation equations for Fuchsian systems

Yoshishige Haraoka (2012)

Banach Center Publications

For a Fuchsian system d Y / d x = ( j = p ( A j ) / ( x - t j ) ) Y , (F) t , t , . . . , t p being distinct points in ℂ and A , A , . . . , A p M ( n × n ; ) , the number α of accessory parameters is determined by the spectral types s ( A ) , s ( A ) , . . . , s ( A p ) , where A = - j = 1 p A j . We call the set z = ( z , z , . . . , z α ) of α parameters a regular coordinate if all entries of the A j are rational functions in z. It is not yet known that, for any irreducibly realizable set of spectral types, a regular coordinate does exist. In this paper we study a process of obtaining a new regular coordinate from a given one by a coalescence of eigenvalues of the matrices...

Relations de Fuchs pour les systèmes différentiels réguliers

Eduardo Corel (2001)

Bulletin de la Société Mathématique de France

Dans cet article, nous montrons que la notion analytique d’exposants développée par Levelt pour les systèmes différentiels linéaires en une singularité régulière s’interprète algébriquement en termes d’invariants de réseaux, relatifs à un réseau stable maximal que nous appelons « réseau de Levelt ». Nous obtenons en particulier un encadrement pour la somme des exposants des systèmes n’ayant que des singularités régulières sur 1 ( ).

Remarks on inverse of matrix polynomials

Fischer, Cyril, Náprstek, Jiří (2017)

Programs and Algorithms of Numerical Mathematics

Analysis of a non-classically damped engineering structure, which is subjected to an external excitation, leads to the solution of a system of second order ordinary differential equations. Although there exists a large variety of powerful numerical methods to accomplish this task, in some cases it is convenient to formulate the explicit inversion of the respective quadratic fundamental system. The presented contribution uses and extends concepts in matrix polynomial theory and proposes an implementation...

Remarks on the uniqueness of second order ODEs

Dalibor Pražák (2011)

Applications of Mathematics

We are concerned with the uniqueness problem for solutions to the second order ODE of the form x ' ' + f ( x , t ) = 0 , subject to appropriate initial conditions, under the sole assumption that f is non-decreasing with respect to x , for each t fixed. We show that there is non-uniqueness in general; on the other hand, several types of reasonable additional assumptions make the problem uniquely solvable. The interest in this problem comes, among other, from the study of oscillations of lumped parameter systems with implicit...

Resurgence in a Hamilton-Jacobi equation

Carme Olivé, David Sauzin, Tere M. Seara (2003)

Annales de l’institut Fourier

We study the resurgent structure associated with a Hamilton-Jacobi equation. This equation is obtained as the inner equation when studying the separatrix splitting problem for a perturbed pendulum via complex matching. We derive the Bridge equation, which encompasses infinitely many resurgent relations satisfied by the formal solution and the other components of the formal integral.

Resurgence of the Euler-MacLaurin summation formula

Ovidiu Costin, Stavros Garoufalidis (2008)

Annales de l’institut Fourier

The Euler-MacLaurin summation formula compares the sum of a function over the lattice points of an interval with its corresponding integral, plus a remainder term. The remainder term has an asymptotic expansion, and for a typical analytic function, it is a divergent (Gevrey-1) series. Under some decay assumptions of the function in a half-plane (resp. in the vertical strip containing the summation interval), Hardy (resp. Abel-Plana) prove that the asymptotic expansion is a Borel summable series,...

Résurgence-sommabilité de séries formelles ramifiées dépendant d’un paramètre et solutions d’équations différentielles linéaires

Jean-Marc Rasoamanana (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cet article, nous établissons le caractère résurgent-sommable de séries formelles ramifiées solutions d’une classe d’équations différentielles linéaires. Nous analysons d’une part le problème de la dépendance analytique des sommes de Borel de telles séries par rapport aux paramètres de cette classe d’équations différentielles linéaires d’ordre deux, et d’autre part, nous analysons la structure résurgente complète associée à ces séries formelles via l’outil des singularités générales (ou microfonctions)....

Currently displaying 1 – 17 of 17

Page 1