Page 1

Displaying 1 – 15 of 15

Showing per page

Factorisation d'opérateurs différentiels à coefficients dans une extension liouvillienne d'un corps valué

Magali Bouffet (2002)

Annales de l’institut Fourier

On démontre ici un lemme de Hensel pour les opérateurs différentiels. On en déduit un théorème de factorisation pour des opérateurs différentiels à coefficients dans une extension liouvillienne transcendante d’un corps valué. On obtient en particulier un théorème de factorisation pour des opérateurs différentiels à coefficients dans une extension de ( ( z ) ) par un nombre fini d’exponentielles et de logarithmes algébriquement indépendants sur ( ( z ) ) .

Families of linear differential equations related to the second Painlevé equation

Marius van der Put (2011)

Banach Center Publications

This paper is a sequel to [vdP-Sa] and [vdP]. The two classes of differential modules (0,-,3/2) and (-,-,3), related to PII, are interpreted as fine moduli spaces. It is shown that these moduli spaces coincide with the Okamoto-Painlevé spaces for the given parameters. The geometry of the moduli spaces leads to a proof of the Painlevé property for PII in standard form and in the Flaschka-Newell form. The Bäcklund transformations, the rational solutions and the Riccati solutions for PII are derived...

Feuilletages singuliers de codimension un, groupoïde de Galois et intégrales premières

Guy Casale (2006)

Annales de l’institut Fourier

Dans cet article, nous étudions le groupoïde de Galois d’un germe de feuilletage holomorphe de codimension un. Nous associons à ce 𝒟 -groupoïde de Lie un invariant biméromorphe  : le rang transverse. Nous étudions en détails les relations entre cet invariant, l’existence de suites de Godbillon-Vey particulières et l’existence d’une intégrale première dans une extension fortement normale du corps différentiel des germes de fonctions méromorphes. Nous obtenons ainsi une généralisation d’un théorème...

Finite and infinite order of growth of solutions to linear differential equations near a singular point

Samir Cherief, Saada Hamouda (2021)

Mathematica Bohemica

In this paper, we investigate the growth of solutions of a certain class of linear differential equation where the coefficients are analytic functions in the closed complex plane except at a finite singular point. For that, we will use the value distribution theory of meromorphic functions developed by Rolf Nevanlinna with adapted definitions.

Finite-dimensional differential algebraic groups and the Picard-Vessiot theory

Anand Pillay (2002)

Banach Center Publications

We make some observations relating the theory of finite-dimensional differential algebraic groups (the ∂₀-groups of [2]) to the Galois theory of linear differential equations. Given a differential field (K,∂), we exhibit a surjective functor from (absolutely) split (in the sense of Buium) ∂₀-groups G over K to Picard-Vessiot extensions L of K, such that G is K-split iff L = K. In fact we give a generalization to "K-good" ∂₀-groups. We also point out that the "Katz group" (a certain linear algebraic...

Fonctions multisommables

Bernard Malgrange, Jean-Pierre Ramis (1992)

Annales de l'institut Fourier

La notion de multisommabilité intervient dans la théorie des équations différentielles lorsque des exponentielles d’ordres différents se mélangent. Elle a été introduite par J. Écalle et étudié récemment par plusieurs auteurs. On en donne ici une définition simple, qui fait uniquement intervenir des propriétés de décroissance exponentielle.

Currently displaying 1 – 15 of 15

Page 1