Comparison of a genetic algorithm and a gradient based optimisation technique for the detection of subsurface inclusions.
We give a theorem on error estimates of approximate solutions for explicit and implicit difference functional equations with unknown functions of several variables. We apply this general result to investigate the stability of difference methods for quasilinear functional differential equations with initial boundary condition of Dirichlet type. We consider first order partial functional differential equations and parabolic functional differential problems. We compare the properties of explicit...
Initial-boundary value problems of Dirichlet type for parabolic functional differential equations are considered. Explicit difference schemes of Euler type and implicit difference methods are investigated. The following theoretical aspects of the methods are presented. Sufficient conditions for the convergence of approximate solutions are given and comparisons of the methods are presented. It is proved that the assumptions on the regularity of the given functions are the same for both methods. It...
We study the growth rate of a cell population that follows an age-structured PDE with time-periodic coefficients. Our motivation comes from the comparison between experimental tumor growth curves in mice endowed with intact or disrupted circadian clocks, known to exert their influence on the cell division cycle. We compare the growth rate of the model controlled by a time-periodic control on its coefficients with the growth rate of stationary models of the same nature, but with averaged coefficients....
In this work we describe two schemes for solving level set equation in 3D with a method based on finite volumes. These schemes use the so-called dual volumes as in [Coudiére, Y., Hubert, F.: A 3D discrete duality finite volume method for nonlinear elliptic equations Algoritmy 2009 (2009), 51–60.], [Hermeline, F.: A finite volume method for approximating 3D diffusion operators on general meshes Journal of Computational Physics 228, 16 (2009), 5763–5786.], where they are used for the nonlinear elliptic...
A nonlinear parabolic problem with the Newton boundary conditions and its weak formulation are examined. The problem describes nonstationary heat conduction in inhomogeneous and anisotropic media. We prove a comparison principle which guarantees that for greater data we obtain, in general, greater weak solutions. A new strategy of proving the comparison principle is presented.
We prove comparison principles for viscosity solutions of nonlinear second order, uniformly elliptic equations, which extend previous results of P. L. Lions, R. Jensen and H. Ishii. Some basic pointwise estimates for classical solutions are also extended to continuous viscosity solutions.