Displaying 261 – 280 of 876

Showing per page

Comparison results for a class of variational inequalities.

M. R. Posteraro, R. Volpicelli (1993)

Revista Matemática de la Universidad Complutense de Madrid

In this paper we study a variational inequality related to a linear differential operator of elliptic type. We give a pointwise bound for the rearrangement of the solution u, and an estimate for the L2-norm of the gradient of u.

Comparison theorems for infinite systems of parabolic functional-differential equations

Danuta Jaruszewska-Walczak (2001)

Annales Polonici Mathematici

The paper deals with a weakly coupled system of functional-differential equations t u i ( t , x ) = f i ( t , x , u ( t , x ) , u , x u i ( t , x ) , x x u i ( t , x ) ) , i ∈ S, where (t,x) = (t,x₁,...,xₙ) ∈ (0,a) × G, u = u i i S and S is an arbitrary set of indices. Initial boundary conditions are considered and the following questions are discussed: estimates of solutions, criteria of uniqueness, continuous dependence of solutions on given functions. The right hand sides of the equations satisfy nonlinear estimates of the Perron type with respect to the unknown functions. The results are...

Comparison theorems for temperatures in noncylindrical domains

Eugene B. Fabes, Nicola Garofalo, Sandro Salsa (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa Nota gli autori presentano alcuni risultati riguardanti il comportamento alla frontiera di domini non cilindrici delle soluzioni positive dell'equazione del calore. Una conseguenza è che due soluzioni positive qualunque, che si annullano su una parte della frontiera laterale, tendono a zero con lo stesso ordine.

Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations

Eduard Feireisl (1990)

Aplikace matematiky

In the present paper, the existence of a weak time-periodic solution to the nonlinear telegraph equation U t t + d U t - σ ( x , t , U x ) x + a U = f ( x , t , U x , U t , U ) with the Dirichlet boundary conditions is proved. No “smallness” assumptions are made concerning the function f . The main idea of the proof relies on the compensated compactness theory.

Currently displaying 261 – 280 of 876