Displaying 281 – 300 of 515

Showing per page

Modelling and Mathematical Analysis of the Glass Eel Migration in the Adour River Estuary

M. Odunlami, G. Vallet (2012)

Mathematical Modelling of Natural Phenomena

In this paper we are interested in a mathematical model of migration of grass eels in an estuary. We first revisit a previous model proposed by O. Arino and based on a degenerate convection-diffusion equation of parabolic-hyperbolic type with time-varying subdomains. Then, we propose an adapted mathematical framework for this model, we prove a result of existence of a weak solution and we propose some numerical simulations.

Modelling bioremediation of polluted soils in unsaturated condition and its effect on the soil hydraulic properties

Iacopo Borsi, Angiolo Farina, Antonio Fasano, Mario Primicerio (2008)

Applications of Mathematics

We study the unsaturated flow of an incompressible liquid carrying a bacterial population through a porous medium contaminated with some pollutant. The biomass grows feeding on the pollutant and affecting at the same time all the physics of the flow. We formulate a mathematical model in a one-dimensional setting and we prove an existence theorem for it. The so-called fluid media scaling approach, often used in the literature, is discussed and its limitations are pointed out on the basis of a specific...

Modelling geophysical flows in the equatorial zone

Laure Saint-Raymond (2005)

Journées Équations aux dérivées partielles

We present here a series of works which aims at describing geophysical flows in the equatorial zone, taking into account the dominating influence of the earth rotation. We actually proceed by successive approximations computing for each model the response of the fluid to the strong Coriolis penalisation. The main difficulty is due to the spatial variations of the Coriolis acceleration : in particular, as it vanishes at the equator, fast oscillations are trapped in a thin strip of latitudes.

Modelling of convective phenomena in forest fire.

M.ª Isabel Asensio, Luis Ferragut, Jacques Simon (2002)

RACSAM

We present a model coupling the fire propagation equations in a bidimensional domain representing the surface, and the air movement equations in a three dimensional domain representing an air layer. As the air layer thickness is small compared with its length, an asymptotic analysis gives a three dimensional convective model governed by a bidimensional equation verified by a stream function. We also present the numerical simulations of these equations.

Modelling of Plant Growth with Apical or Basal Meristem

N. Bessonov, F. Crauste, V. Volpert (2011)

Mathematical Modelling of Natural Phenomena

Plant growth occurs due to cell proliferation in the meristem. We model the case of apical meristem specific for branch growth and the case of basal meristem specific for bulbous plants and grass. In the case of apical growth, our model allows us to describe the variety of plant forms and lifetimes, endogenous rhythms and apical domination. In the case of basal growth, the spatial structure, which corresponds to the appearance of leaves, results...

Modelling of singularities in elastoplastic materials with fatigue

Pavel Krejčí (1994)

Applications of Mathematics

The hypothesis that, on the macroscopic level, the accumulated fatigue of an elastoplastic material with kinematic hardening can be identified from the mathematical point of view with the dissipated energy, is used for the construction of a new constitutive elastoplastic fatigue model. Its analytical investigation characterizes conditions for the formation of singularities in a finite time. The corresponding constitutive law is then coupled with the dynamical equation of motion of a one-dimensional...

Modelling the Impact of Pericyte Migration and Coverage of Vessels on the Efficacy of Vascular Disrupting Agents

S. R. McDougall, M. A.J. Chaplain, A. Stéphanou, A. R.A. Anderson (2010)

Mathematical Modelling of Natural Phenomena

Over the past decade or so, there have been a large number of modelling approaches aimed at elucidating the most important mechanisms affecting the formation of new capillaries from parent blood vessels — a process known as angiogenesis. Most studies have focussed upon the way in which capillary sprouts are initiated and migrate in response to diffusible chemical stimuli supplied by hypoxic stromal cells and leukocytes in the contexts of solid tumour...

Models of Self-Organizing Bacterial Communities and Comparisons with Experimental Observations

A. Marrocco, H. Henry, I. B. Holland, M. Plapp, S. J. Séror, B. Perthame (2010)

Mathematical Modelling of Natural Phenomena

Bacillus subtilis swarms rapidly over the surface of a synthetic medium creating remarkable hyperbranched dendritic communities. Models to reproduce such effects have been proposed under the form of parabolic Partial Differential Equations representing the dynamics of the active cells (both motile and multiplying), the passive cells (non-motile and non-growing) and nutrient concentration. We test the numerical behavior of such models and compare...

Modification of unfolding approach to two-scale convergence

Jan Franců (2010)

Mathematica Bohemica

Two-scale convergence is a powerful mathematical tool in periodic homogenization developed for modelling media with periodic structure. The contribution deals with the classical definition, its problems, the ``dual'' definition based on the so-called periodic unfolding. Since in the case of domains with boundary the unfolding operator introduced by D. Cioranescu, A. Damlamian, G. Griso does not satisfy the crucial integral preserving property, the contribution proposes a modified unfolding operator...

Currently displaying 281 – 300 of 515