On a certain lubrication slip model.
A special two-sided condition for the incremental magnetic reluctivity is introduced which guarantees the unique existence of both the weak and the approximate solutions of the nonlinear stationary magnetic field distributed on a region composed of different media, as well as a certain estimate of the error between the two solutions. The condition, being discussed from the physical as well as the mathematical point of view, can be easily verified and is fulfilled for various magnetic reluctivity...
2000 Mathematics Subject Classification: 35J40, 49J52, 49J40, 46E30By means of a suitable nonsmooth critical point theory for lower semicontinuous functionals we prove the existence of infinitely many solutions for a class of quasilinear Dirichlet problems with symmetric non-linearities having a one-sided growth condition of exponential type.The research of the authors was partially supported by the MIUR project “Variational and topological methods in the study of nonlinear phenomena” (COFIN 2001)....
We study the realization of the operator in , where is a possibly unbounded convex open set in , is a convex unbounded function such that and , is the element with minimal norm in the subdifferential of at , and is a probability measure, infinitesimally invariant for . We show that , with domain is a dissipative self-adjoint operator in . Note that the functions in the domain of do not satisfy any particular boundary condition. Log-Sobolev and Poincaré inequalities allow...
We study a new class of Markov type semigroups (not strongly continuous in general) in the space of all real, uniformly continuous and bounded functions on a separable metric space E. Our results allow us to characterize the generators of Markov transition semigroups in infinite dimensions such as the heat and the Ornstein-Uhlenbeck semigroups.
We prove some comparison results for Monge-Ampère type equations in dimension two. We consider also the case of eigenfunctions and we prove a kind of reverse inequalities.