On maximum principles and Liouville theorems for quasilinear elliptic equations and systems
Energy functionals for the Preisach hysteresis operator are used for proving the existence of weak periodic solutions of the one-dimensional systems of Maxwell equations with hysteresis for not too large right-hand sides. The upper bound for the speed of propagation of waves is independent of the hysteresis operator.
Two new assertions characterizing analytically disks in the Euclidean plane are proved. Weighted mean value property of positive solutions to the Helmholtz and modified Helmholtz equations are used for this purpose; the weight has a logarithmic singularity. The obtained results are compared with those without weight that were found earlier.
The system of zero-pressure gas dynamics conservation laws describes the dynamics of free particles sticking under collision while mass and momentum are conserved. The existence of such solutions was established some time ago. Here we report a uniqueness result that uses the Oleinik entropy condition and a cohesion condition. Both of these conditions are automatically satisfied by solutions obtained in previous existence results. Important tools in the proof of uniqueness are regularizations, generalized...
We study the microlocal analyticity of solutions of the nonlinear equationwhere is complex-valued, real analytic in all its arguments and holomorphic in . We show that if the function is a solution, and or if is a solution, , , and , then . Here denotes the analytic wave-front set of and Char is the characteristic set of the linearized operator. When , we prove a more general result involving the repeated brackets of and of any order.
We consider the Cauchy problem for an infinite-dimensional Ornstein-Uhlenbeck equation perturbed by gradient of a potential. We prove some results on existence and uniqueness of mild solutions of the problem. We also provide stochastic representation of mild solutions in terms of linear backward stochastic differential equations determined by the Ornstein-Uhlenbeck operator and the potential.
We consider noncoercive functionals on a reflexive Banach space and establish minimization theorems for such functionals on smooth constraint manifolds. The functionals considered belong to a class which includes semi-coercive, compact-coercive and P-coercive functionals. Some applications to nonlinear partial differential equations are given.
The Schwarz alternating method can be used to solve elliptic boundary value problems on domains which consist of two or more overlapping subdomains. The solution is approximated by an infinite sequence of functions which results from solving a sequence of elliptic boundary value problems in each of the subdomains. In this paper, proofs of convergence of some Schwarz alternating methods for nonlinear elliptic problems which are known to have solutions by the monotone method (also known as the method...
The Schwarz alternating method can be used to solve elliptic boundary value problems on domains which consist of two or more overlapping subdomains. The solution is approximated by an infinite sequence of functions which results from solving a sequence of elliptic boundary value problems in each of the subdomains. In this paper, proofs of convergence of some Schwarz alternating methods for nonlinear elliptic problems which are known to have solutions by the monotone method (also known as the method...
We study the mappings of monotone type in Orlicz-Sobolev spaces. We introduce a new class as a generalization of and extend the definition of quasimonotone map. We also prove existence results for equations involving monotone-like mappings.
In this paper we analyze movable singularities of the solutions of the equation for self-similar profiles resulting from semilinear wave equation. We study local analytic solutions around two fixed singularity points of this equation- ρ = 0 and ρ = 1. The movable singularities of local analytic solutions at the origin will be connected with those of the Lane-Emden equation. The function describing approximately their position on the complex plane will be derived. For ρ > 1 some topological considerations...