Weakly hyperbolic equations with time degeneracy in Sobolev spaces.
We consider the linear Schrödinger equation under periodic boundary conditions, driven by a random force and damped by a quasilinear damping: The force is white in time and smooth in ; the potential is typical. We are concerned with the limiting, as , behaviour of solutions on long time-intervals , and with behaviour of these solutions under the double limit and . We show that these two limiting behaviours may be described in terms of solutions for thesystem of effective equations for(...
We provide a geometric well-posedness theory for the Einstein equations within the class of weakly regular vacuum spacetimes with -symmetry, as defined in the present paper, and we investigate their global causal structure. Our assumptions allow us to give a meaning to the Einstein equations under weak regularity as well as to solve the initial value problem under the assumed symmetry. First, introducing a frame adapted to the symmetry and identifying certain cancellation properties taking place...
Let be a order differential operator in a hermitian vector bundle over a compact riemannian manifold with boundary ; and denote by the realization defined by a normal differential boundary condition (, Cauchy data). We characterize, by an explicit condition on and near , the realizations for which there exists an integro-differential sesquilinear form on such that on ; moreover we show that these are exactly the realizations satisfying a weak semiboundedness estimate:...
We present a Furi-Pera type theorem for weakly sequentially continuous maps. As an application we establish new existence principles for elliptic Dirichlet problems.
Bounded weak solutions to a particular class of degenerate parabolic cross-diffusion systems are shown to coincide with the unique strong solution determined by the same initial condition on the maximal existence interval of the latter. The proof relies on an estimate established for a relative entropy associated to the system.
The coupled Navier-Stokes/Allen-Cahn system is a simple model to describe phase separation in two-component systems interacting with an incompressible fluid flow. We demonstrate the weak-strong uniqueness result for this system in a bounded domain in three spatial dimensions which implies that when a strong solution exists, then a weak solution emanating from the same data coincides with the strong solution on its whole life span. The proof of given assertion relies on a form of a relative entropy...
In this paper, travelling wave solutions for the Zakharov equation in plasmas with power law nonlinearity are studied by using the Weierstrass elliptic function method. As a result, some previously known solutions are recovered, and at the same time some new ones are also given.
2000 Mathematics Subject Classification: 35L15, 35B40, 47F05.Introduction and statement of results. In the present paper we will be interested in studying the decay properties of the Schrödinger group.The authors have been supported by the agreement Brazil-France in Mathematics – Proc. 69.0014/01-5. The first two authors have also been partially supported by the CNPq-Brazil.
We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke and Ortiz [ESAIM: COCV14 (2008) 494–516]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization....
We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke and Ortiz [ESAIM: COCV14 (2008) 494–516]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization....
We study boundedness properties of commutators of general linear operators with real-valued BMO functions on weighted spaces. We then derive applications to particular important operators, such as Calderón-Zygmund type operators, pseudo-differential operators, multipliers, rough singular integrals and maximal type operators.