Displaying 1101 – 1120 of 2166

Showing per page

On the critical Neumann problem with lower order perturbations

Jan Chabrowski, Bernhard Ruf (2007)

Colloquium Mathematicae

We investigate the solvability of the Neumann problem (1.1) involving a critical Sobolev exponent and lower order perturbations in bounded domains. Solutions are obtained by min max methods based on a topological linking. A nonlinear perturbation of a lower order is allowed to interfere with the spectrum of the operator -Δ with the Neumann boundary conditions.

On the curvature and torsion effects in one dimensional waveguides

Guy Bouchitté, M. Luísa Mascarenhas, Luís Trabucho (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the Laplace operator in a thin tube of 3 with a Dirichlet condition on its boundary. We study asymptotically the spectrum of such an operator as the thickness of the tube's cross section goes to zero. In particular we analyse how the energy levels depend simultaneously on the curvature of the tube's central axis and on the rotation of the cross section with respect to the Frenet frame. The main argument is a Γ-convergence theorem for a suitable sequence of quadratic energies.

On the derivation and mathematical analysis of some quantum–mechanical models accounting for Fokker–Planck type dissipation: Phase space, Schrödinger and hydrodynamic descriptions

José Luis López, Jesús Montejo–Gámez (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

This paper is intended to provide the reader with a review of the authors’ latest results dealing with the modeling of quantum dissipation/diffusion effects at the level of Schrödinger systems, in connection with the corresponding phase space and fluid formulations of such kind of phenomena, especially in what concerns the role of the Fokker–Planck mechanism in the description of open quantum systems and the macroscopic dynamics associated with some viscous hydrodynamic models of Euler and Navier–Stokes...

On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation

François Castella (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present the semi-conductor Boltzmann equation, which is time-reversible, and indicate that it can be formally derived by considering the large time and small perturbing potential limit in the Von-Neumann equation (time-reversible). We then rigorously compute the corresponding asymptotics in the case of the Von-Neumann equation on the Torus. We show that the limiting equation we obtain does not coincide with the physically realistic model. The former is indeed an equation of Boltzmann type, yet...

On the derivation of homogeneous hydrostatic equations

Emmanuel Grenier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we study the derivation of homogeneous hydrostatic equations starting from 2D Euler equations, following for instance [2,9]. We give a convergence result for convex profiles and a divergence result for a particular inflexion profile.

Currently displaying 1101 – 1120 of 2166