Solutions to integro-differential parabolic problems arising in the pricing of financial options in a Lev́y market.
This article addresses some theoretical questions related to the choice of boundary conditions, which are essential for modelling and numerical computing in mathematical fluids mechanics. Unlike the standard choice of the well known non slip boundary conditions, we emphasize three selected sets of slip conditions, and particularly stress on the interaction between the appropriate functional setting and the status of these conditions.
We establish the well-posedness of boundary value problems for a family of nonlinear higherorder parabolic equations which comprises some models of epitaxial growth and thin film theory. In order to achieve this result, we provide a unified framework for constructing local mild solutions in C0([0, T]; Lp(Ω)) by introducing appropriate time-weighted Lebesgue norms inspired by a priori estimates of solutions. This framework allows us to obtain global existence of solutions under the proviso that initial...
The Euler-Poisson system is a fundamental two-fluid model to describe the dynamics of the plasma consisting of compressible electrons and a uniform ion background. In the 3D case Guo [7] first constructed a global smooth irrotational solution by using the dispersive Klein-Gordon effect. It has been conjectured that same results should hold in the two-dimensional case. In our recent work [13], we proved the existence of a family of smooth solutions by constructing the wave operators for the 2D system....
We study a semilinear equation with derivatives satisfying a null condition on slowly rotating Kerr spacetimes. We prove that given sufficiently small initial data, the solution exists globally in time and decays with a quantitative rate to the trivial solution. The proof uses the robust vector field method. It makes use of the decay properties of the linear wave equation on Kerr spacetime, in particular the improved decay rates in the region .
We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data , where and , , or , or . Moreover, if , or if , or if and we show that the Cauchy problem is unconditionally wellposed in . Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ the normal...
In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.
We consider steady compressible Navier-Stokes-Fourier system in a bounded two-dimensional domain. We show the existence of a weak solution for arbitrarily large data for the pressure law if and if , , depending on the model for the heat flux.