Displaying 301 – 320 of 1607

Showing per page

Counterexamples to the Strichartz inequalities for the wave equation in general domains with boundary

Oana Ivanovici (2012)

Journal of the European Mathematical Society

In this paper we consider a smooth and bounded domain Ω d of dimension d 2 with boundary and we construct sequences of solutions to the wave equation with Dirichlet boundary condition which contradict the Strichartz estimates of the free space, providing losses of derivatives at least for a subset of the usual range of indices. This is due to microlocal phenomena such as caustics generated in arbitrarily small time near the boundary. Moreover, the result holds for microlocally strictly convex domains...

Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains

Toshiyuki Suzuki (2014)

Mathematica Bohemica

Nonlinear Schrödinger equations (NLS) a with strongly singular potential a | x | - 2 on a bounded domain Ω are considered. If Ω = N and a > - ( N - 2 ) 2 / 4 , then the global existence of weak solutions is confirmed by applying the energy methods established by N. Okazawa, T. Suzuki, T. Yokota (2012). Here a = - ( N - 2 ) 2 / 4 is excluded because D ( P a ( N ) 1 / 2 ) is not equal to H 1 ( N ) , where P a ( N ) : = - Δ - ( N - 2 ) 2 / ( 4 | x | 2 ) is nonnegative and selfadjoint in L 2 ( N ) . On the other hand, if Ω is a smooth and bounded domain with 0 Ω , the Hardy-Poincaré inequality is proved in J. L. Vazquez, E. Zuazua (2000)....

Curved triangular finite C m -elements

Alexander Ženíšek (1978)

Aplikace matematiky

Curved triangular C m -elements which can be pieced together with the generalized Bell’s C m -elements are constructed. They are applied to solving the Dirichlet problem of an elliptic equation of the order 2 ( m + 1 ) in a domain with a smooth boundary by the finite element method. The effect of numerical integration is studied, sufficient conditions for the existence and uniqueness of the approximate solution are presented and the rate of convergence is estimated. The rate of convergence is the same as in the...

Cycles proches, spécialisation et 𝒟 -modules

Yves Laurent, Bernard Malgrange (1995)

Annales de l'institut Fourier

L’article reprend systématiquement la théorie des cycles proches pour les 𝒟 -modules holonomes. La théorie est étendue aux complexes, et l’on obtient une équivalence de catégories entre complexes monodromiques et complexes spécialisables (ces derniers, sur le complété de 𝒟 pour la V filtration). On obtient en particulier les théorèmes de commutation par rapport à la dualité, aux images inverses lisses et aux images directes propres qu’il était naturel d’espérer.

Decomposition and Moser's lemma.

David E. Edmunds, Miroslav Krbec (2002)

Revista Matemática Complutense

Using the idea of the optimal decomposition developed in recent papers (Edmunds-Krbec, 2000) and in Cruz-Uribe-Krbec we study the boundedness of the operator Tg(x) = ∫x1 g(u)du / u, x ∈ (0,1), and its logarithmic variant between Lorentz spaces and exponential Orlicz and Lorentz-Orlicz spaces. These operators are naturally linked with Moser's lemma, O'Neil's convolution inequality, and estimates for functions with prescribed rearrangement. We give sufficient conditions for and very simple proofs...

Décomposition formelle d'un système microdifférentiel aux points génériques

Rui Rodrigues (1992)

Annales de l'institut Fourier

Soit X une variété analytique complexe et T * X X son fibre cotangent. Soit M un module cohérent sur l’anneau des opérateurs microdifférentiels formels sur X . Dans le cas ou le support (ou variété caractéristique) de M est une hypersurface, B. Malgrange a démontre que M se décompose en systèmes élémentaires au point générique et après tensorisation par l’anneau des opérateurs microdifférentiels d’ordre q - fractionnaire avec q approprie.Dans ce travail, on généralise le résultat cité : d’abord pour un...

Deep learning for gradient flows using the Brezis–Ekeland principle

Laura Carini, Max Jensen, Robert Nürnberg (2023)

Archivum Mathematicum

We propose a deep learning method for the numerical solution of partial differential equations that arise as gradient flows. The method relies on the Brezis–Ekeland principle, which naturally defines an objective function to be minimized, and so is ideally suited for a machine learning approach using deep neural networks. We describe our approach in a general framework and illustrate the method with the help of an example implementation for the heat equation in space dimensions two to seven.

Degenerating Cahn-Hilliard systems coupled with mechanical effects and complete damage processes

Christian Heinemann, Christiane Kraus (2014)

Mathematica Bohemica

This paper addresses analytical investigations of degenerating PDE systems for phase separation and damage processes considered on nonsmooth time-dependent domains with mixed boundary conditions for the displacement field. The evolution of the system is described by a degenerating Cahn-Hilliard equation for the concentration, a doubly nonlinear differential inclusion for the damage variable and a quasi-static balance equation for the displacement field. The analysis is performed on a time-dependent...

Description of the lack of compactness of some critical Sobolev embedding

Hajer Bahouri (2011)

Journées Équations aux dérivées partielles

In this text, we present two recent results on the characterization of the lack of compactness of some critical Sobolev embedding. The first one derived in [5] deals with an abstract framework including Sobolev, Besov, Triebel-Lizorkin, Lorentz, Hölder and BMO spaces. The second one established in [3] concerns the lack of compactness of H 1 ( 2 ) into the Orlicz space. Although the two results are expressed in the same manner (by means of defect measures) and rely on the defect of compactness due to concentration...

Currently displaying 301 – 320 of 1607