Conditions d'hyperbolicité pour les systèmes à multiplicité constante, de rang pouvant varier
The following theorem is the main result of the paper: Let X be a complex Banach space and T belong to L(X). Suppose that 0 lies at the unbounded component of the set of those l such that lI - T is a Fredholm operator. Let Y be a dense subspace of the dual space X' and S be a closed operator from Y to X such that T'(Y) is contained in Y and TSy = ST'y for every y belonging to Y. Then for every vector x belonging to X', T'x belongs to Y if and only if x belongs to Y.
A system of one-dimensional linear parabolic equations coupled by boundary conditions which include additional state variables, is considered. This system describes an electric circuit with distributed parameter lines and lumped capacitors all connected through a resistive multiport. By using the monotony in a space of the form , one proves the existence and uniqueness of a variational solution, if reasonable engineering hypotheses are fulfilled.
We study the geometry of multidimensional scalar order PDEs (i.e. PDEs with independent variables), viewed as hypersurfaces in the Lagrangian Grassmann bundle over a -dimensional contact manifold . We develop the theory of characteristics of in terms of contact geometry and of the geometry of Lagrangian Grassmannian and study their relationship with intermediate integrals of . After specializing such results to general Monge-Ampère equations (MAEs), we focus our attention to MAEs of...
The method of contact integrable extensions is used to find new differential coverings for the generalized (2 + 1)-dimensional dispersionless Dym equation and corresponding Bäcklund transformations.