Displaying 61 – 80 of 95

Showing per page

Continuity of solutions to a basic problem in the calculus of variations

Francis Clarke (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We study the problem of minimizing Ω F ( D u ( x ) ) d x over the functions u W 1 , 1 ( Ω ) that assume given boundary values φ on Γ : = Ω . The lagrangian F and the domain Ω are assumed convex. A new type of hypothesis on the boundary function φ is introduced: thelower (or upper) bounded slope condition. This condition, which is less restrictive than the familiar bounded slope condition of Hartman, Nirenberg and Stampacchia, allows us to extend the classical Hilbert-Haar regularity theory to the case of semiconvex (or semiconcave) boundary...

Continuity of the fundamental operations on distributions having a specified wave front set (with a counterexample by Semyon Alesker)

Christian Brouder, Nguyen Viet Dang, Frédéric Hélein (2016)

Studia Mathematica

The pull-back, push-forward and multiplication of smooth functions can be extended to distributions if their wave front sets satisfy some conditions. Thus, it is natural to investigate the topological properties of these operations between spaces Γ ' of distributions having a wave front set included in a given closed cone Γ of the cotangent space. As discovered by S. Alesker, the pull-back is not continuous for the usual topology on Γ ' , and the tensor product is not separately continuous. In this paper,...

Continuous dependence for solution classes of Euler-Lagrange equations generated by linear growth energies

Ken Shirakawa (2009)

Banach Center Publications

In this paper, a one-dimensional Euler-Lagrange equation associated with the total variation energy, and Euler-Lagrange equations generated by approximating total variations with linear growth, are considered. Each of the problems presented can be regarded as a governing equation for steady-states in solid-liquid phase transitions. On the basis of precise structural analysis for the solutions, the continuous dependence between the solution classes of approximating problems and that of the limiting...

Controllability of a parabolic system with a diffuse interface

Jérôme Le Rousseau, Matthieu Léautaud, Luc Robbiano (2013)

Journal of the European Mathematical Society

We consider a linear parabolic transmission problem across an interface of codimension one in a bounded domain or on a Riemannian manifold, where the transmission conditions involve an additional parabolic operator on the interface. This system is an idealization of a three-layer model in which the central layer has a small thickness δ . We prove a Carleman estimate in the neighborhood of the interface for an associated elliptic operator by means of partial estimates in several microlocal regions....

Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem

Florian Mehats (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present here a discretization of a nonlinear oblique derivative boundary value problem for the heat equation in dimension two. This finite difference scheme takes advantages of the structure of the boundary condition, which can be reinterpreted as a Burgers equation in the space variables. This enables to obtain an energy estimate and to prove the convergence of the scheme. We also provide some numerical simulations of this problem and a numerical study of the stability of the scheme, which appears...

Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem

Florian Mehats (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present here a discretization of a nonlinear oblique derivative boundary value problem for the heat equation in dimension two. This finite difference scheme takes advantages of the structure of the boundary condition, which can be reinterpreted as a Burgers equation in the space variables. This enables to obtain an energy estimate and to prove the convergence of the scheme. We also provide some numerical simulations of this problem and a numerical study of the stability of the scheme, which appears...

Convergence of formal solutions of first order singular nonlinear partial differential equations in the complex domain

Masatake Miyake, Akira Shirai (2000)

Annales Polonici Mathematici

We study the convergence or divergence of formal (power series) solutions of first order nonlinear partial differential equations    (SE) f(x,u,Dx u) = 0 with u(0)=0. Here the function f(x,u,ξ) is defined and holomorphic in a neighbourhood of a point ( 0 , 0 , ξ 0 ) x n × u × ξ n ( ξ 0 = D x u ( 0 ) ) and f ( 0 , 0 , ξ 0 ) = 0 . The equation (SE) is said to be singular if f(0,0,ξ) ≡ 0 ( ξ n ) . The criterion of convergence of a formal solution u ( x ) = | α | 1 u α x α of (SE) is given by a generalized form of the Poincaré condition which depends on each formal solution. In the case where the formal...

Convergence of formal solutions of first order singular partial differential equations of nilpotent type

Masatake Miyake, Akira Shirai (2012)

Banach Center Publications

Let (x,y,z) ∈ ℂ³. In this paper we shall study the solvability of singular first order partial differential equations of nilpotent type by the following typical example: P u ( x , y , z ) : = ( y x - z y ) u ( x , y , z ) = f ( x , y , z ) x , y , z , where P = y x - z y : x , y , z x , y , z . For this equation, our aim is to characterize the solvability on x , y , z by using the Im P, Coker P and Ker P, and we give the exact forms of these sets.

Convergence of power series along vector fields and their commutators; a Cartan-Kähler type theorem

B. Jakubczyk (2000)

Annales Polonici Mathematici

We study convergence of formal power series along families of formal or analytic vector fields. One of our results says that if a formal power series converges along a family of vector fields, then it also converges along their commutators. Using this theorem and a result of T. Morimoto, we prove analyticity of formal solutions for a class of nonlinear singular PDEs. In the proofs we use results from control theory.

Currently displaying 61 – 80 of 95