Continuity of solutions to a basic problem in the calculus of variations
We study the problem of minimizing over the functions that assume given boundary values on . The lagrangian and the domain are assumed convex. A new type of hypothesis on the boundary function is introduced: thelower (or upper) bounded slope condition. This condition, which is less restrictive than the familiar bounded slope condition of Hartman, Nirenberg and Stampacchia, allows us to extend the classical Hilbert-Haar regularity theory to the case of semiconvex (or semiconcave) boundary...