Displaying 641 – 660 of 1615

Showing per page

Lanczos-like algorithm for the time-ordered exponential: The * -inverse problem

Pierre-Louis Giscard, Stefano Pozza (2020)

Applications of Mathematics

The time-ordered exponential of a time-dependent matrix 𝖠 ( t ) is defined as the function of 𝖠 ( t ) that solves the first-order system of coupled linear differential equations with non-constant coefficients encoded in 𝖠 ( t ) . The authors have recently proposed the first Lanczos-like algorithm capable of evaluating this function. This algorithm relies on inverses of time-dependent functions with respect to a non-commutative convolution-like product, denoted by * . Yet, the existence of such inverses, crucial to...

Large time regular solutions to the MHD equations in cylindrical domains

Wisam Alame, Wojciech M. Zajączkowski (2011)

Applicationes Mathematicae

We prove the large time existence of solutions to the magnetohydrodynamics equations with slip boundary conditions in a cylindrical domain. Assuming smallness of the L₂-norms of the derivatives of the initial velocity and of the magnetic field with respect to the variable along the axis of the cylinder, we are able to obtain an estimate for the velocity and the magnetic field in W 2 , 1 without restriction on their magnitude. Then the existence follows from the Leray-Schauder fixed point theorem.

Levi's forms of higher codimensional submanifolds

Andrea D'Agnolo, Giuseppe Zampieri (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let X C n , let M be a C 2 hypersurface of X , S be a C 2 submanifold of M . Denote by L M the Levi form of M at z 0 S . In a previous paper [3] two numbers s ± S , p , p T ˙ S * X z 0 are defined; for S = M they are the numbers of positive and negative eigenvalues for L M . For S M , p S × M T ˙ * S X ) , we show here that s ± S , p are still the numbers of positive and negative eigenvalues for L M when restricted to T z 0 C S . Applications to the concentration in degree for microfunctions at the boundary are given.

Currently displaying 641 – 660 of 1615