Large time behavior for nonlinear higher order convection–diffusion equations
We prove the large time existence of solutions to the magnetohydrodynamics equations with slip boundary conditions in a cylindrical domain. Assuming smallness of the L₂-norms of the derivatives of the initial velocity and of the magnetic field with respect to the variable along the axis of the cylinder, we are able to obtain an estimate for the velocity and the magnetic field in without restriction on their magnitude. Then the existence follows from the Leray-Schauder fixed point theorem.
Let , let be a hypersurface of , be a submanifold of . Denote by the Levi form of at . In a previous paper [3] two numbers , are defined; for they are the numbers of positive and negative eigenvalues for . For , , we show here that are still the numbers of positive and negative eigenvalues for when restricted to . Applications to the concentration in degree for microfunctions at the boundary are given.
The estimate is shown to hold if and only if is elliptic and canceling. Here is a homogeneous linear differential operator of order on from a vector space to a vector space . The operator is defined to be canceling if . This result implies in particular the classical Gagliardo–Nirenberg–Sobolev inequality, the Korn–Sobolev inequality and Hodge–Sobolev estimates for differential forms due to J. Bourgain and H. Brezis. In the proof, the class of cocanceling homogeneous linear differential...