Displaying 921 – 940 of 1615

Showing per page

On the persistence of decorrelation in the theory of wave turbulence

Anne-Sophie de Suzzoni (2013)

Journées Équations aux dérivées partielles

We study the statistical properties of the solutions of the Kadomstev-Petviashvili equations (KP-I and KP-II) on the torus when the initial datum is a random variable. We give ourselves a random variable u 0 with values in the Sobolev space H s with s big enough such that its Fourier coefficients are independent from each other. We assume that the laws of these Fourier coefficients are invariant under multiplication by e i θ for all θ . We investigate about the persistence of the decorrelation between the...

On the solution of boundary value problems for sandwich plates

Igor Bock, Ivan Hlaváček, Ján Lovíšek (1986)

Aplikace matematiky

A mathematical model of the equilibrium problem of elastic sandwich plates is established. Using the theory of inequalities of Korn's type for a general class of elliptic systems the existence and uniqueness of a variational solution is proved.

On the spectrum of the p-biharmonic operator involving p-Hardy's inequality

Abdelouahed El Khalil, My Driss Morchid Alaoui, Abdelfattah Touzani (2014)

Applicationes Mathematicae

In this paper, we study the spectrum for the following eigenvalue problem with the p-biharmonic operator involving the Hardy term: Δ ( | Δ u | p - 2 Δ u ) = λ ( | u | p - 2 u ) / ( δ ( x ) 2 p ) in Ω, u W 2 , p ( Ω ) . By using the variational technique and the Hardy-Rellich inequality, we prove that the above problem has at least one increasing sequence of positive eigenvalues.

On the structure of layers for singularly perturbed equations in the case of unbounded energy

E. Sanchez-Palencia (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider singular perturbation variational problems depending on a small parameter ε . The right hand side is such that the energy does not remain bounded as ε 0 . The asymptotic behavior involves internal layers where most of the energy concentrates. Three examples are addressed, with limits elliptic, parabolic and hyperbolic respectively, whereas the problems with ε > 0 are elliptic. In the parabolic and hyperbolic cases, the propagation of singularities appear as an integral property after integrating...

On the structure of layers for singularly perturbed equations in the case of unbounded energy

E. Sanchez–Palencia (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider singular perturbation variational problems depending on a small parameter ε. The right hand side is such that the energy does not remain bounded as ε → 0. The asymptotic behavior involves internal layers where most of the energy concentrates. Three examples are addressed, with limits elliptic, parabolic and hyperbolic respectively, whereas the problems with ε > 0 are elliptic. In the parabolic and hyperbolic cases, the propagation of singularities appear as an integral property after...

Currently displaying 921 – 940 of 1615