Displaying 101 – 120 of 171

Showing per page

Space-Time Estimates of Mild Solutions of a Class of Higher-Order Semilinear Parabolic Equations in L p

Albert N. Sandjo, Célestin Wafo Soh (2014)

Nonautonomous Dynamical Systems

We establish the well-posedness of boundary value problems for a family of nonlinear higherorder parabolic equations which comprises some models of epitaxial growth and thin film theory. In order to achieve this result, we provide a unified framework for constructing local mild solutions in C0([0, T]; Lp(Ω)) by introducing appropriate time-weighted Lebesgue norms inspired by a priori estimates of solutions. This framework allows us to obtain global existence of solutions under the proviso that initial...

Space-time variational saddle point formulations of Stokes and Navier–Stokes equations

Rafaela Guberovic, Christoph Schwab, Rob Stevenson (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The instationary Stokes and Navier−Stokes equations are considered in a simultaneously space-time variational saddle point formulation, so involving both velocities u and pressure p. For the instationary Stokes problem, it is shown that the corresponding operator is a boundedly invertible linear mapping between H1 and H'2, both Hilbert spaces H1 and H2 being Cartesian products of (intersections of) Bochner spaces, or duals of those. Based on these results, the operator that corresponds to the Navier−Stokes...

Stability of solutions for an abstract Dirichlet problem

Marek Galewski (2004)

Annales Polonici Mathematici

We consider continuous dependence of solutions on the right hand side for a semilinear operator equation Lx = ∇G(x), where L: D(L) ⊂ Y → Y (Y a Hilbert space) is self-adjoint and positive definite and G:Y → Y is a convex functional with superquadratic growth. As applications we derive some stability results and dependence on a functional parameter for a fourth order Dirichlet problem. Applications to P.D.E. are also given.

Stabilization of Schrödinger equation in exterior domains

Lassaad Aloui, Moez Khenissi (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We prove uniform local energy estimates of solutions to the damped Schrödinger equation in exterior domains under the hypothesis of the Exterior Geometric Control. These estimates are derived from the resolvent properties.

Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

Stanisław Migórski (2012)

Open Mathematics

We survey recent results on the mathematical modeling of nonconvex and nonsmooth contact problems arising in mechanics and engineering. The approach to such problems is based on the notions of an operator subdifferential inclusion and a hemivariational inequality, and focuses on three aspects. First we report on results on the existence and uniqueness of solutions to subdifferential inclusions. Then we discuss two classes of quasi-static hemivariational ineqaulities, and finally, we present ideas...

Suggestion from the Past?

Machado, J., Jesus, Isabel (2004)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33 (main), 35A22, 78A25, 93A30The generalization of the concept of derivative to non-integer values goes back to the beginning of the theory of differential calculus. Nevertheless, its application in physics and engineering remained unexplored up to the last two decades. Recent research motivated the establishment of strategies taking advantage of the Fractional Calculus (FC) in the modeling and control of many phenomena. In fact, many classical engineering...

Currently displaying 101 – 120 of 171