Displaying 241 – 260 of 526

Showing per page

Nonexistence results for the Cauchy problem of some systems of hyperbolic equations

Mokhtar Kirane, Salim Messaoudi (2002)

Annales Polonici Mathematici

We consider the systems of hyperbolic equations ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | v | p , t > 0, x N , (S1) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | u | q , t > 0, x N u = Δ ( a ( t , x ) u ) + h ( t , x ) | v | p , t > 0, x N , (S2) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + l ( t , x ) | v | m + k ( t , x ) | u | q , t > 0, x N , (S3) ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | u | p , t > 0, x N , ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | v | q , t > 0, x N , in ( 0 , ) × N with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.

On a magnetic characterization of spectral minimal partitions

Bernard Helffer, Thomas Hoffmann-Ostenhof (2013)

Journal of the European Mathematical Society

Given a bounded open set Ω in n (or in a Riemannian manifold) and a partition of Ω by k open sets D j , we consider the quantity 𝚖𝚊𝚡 j λ ( D j ) where λ ( D j ) is the ground state energy of the Dirichlet realization of the Laplacian in D j . If we denote by k ( Ω ) the infimum over all the k -partitions of 𝚖𝚊𝚡 j λ ( D j ) , a minimal k -partition is then a partition which realizes the infimum. When k = 2 , we find the two nodal domains of a second eigenfunction, but the analysis of higher k ’s is non trivial and quite interesting. In this paper, we give...

On a semilinear elliptic equation in n

Gianni Mancini, Kunnath Sandeep (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We prove existence/nonexistence and uniqueness of positive entire solutions for some semilinear elliptic equations on the Hyperbolic space.

Currently displaying 241 – 260 of 526