Displaying 181 – 200 of 284

Showing per page

Modification of unfolding approach to two-scale convergence

Jan Franců (2010)

Mathematica Bohemica

Two-scale convergence is a powerful mathematical tool in periodic homogenization developed for modelling media with periodic structure. The contribution deals with the classical definition, its problems, the ``dual'' definition based on the so-called periodic unfolding. Since in the case of domains with boundary the unfolding operator introduced by D. Cioranescu, A. Damlamian, G. Griso does not satisfy the crucial integral preserving property, the contribution proposes a modified unfolding operator...

Multiscale convergence and reiterated homogenization of parabolic problems

Anders Holmbom, Nils Svanstedt, Niklas Wellander (2005)

Applications of Mathematics

Reiterated homogenization is studied for divergence structure parabolic problems of the form u ε / t - div a x , x / ε , x / ε 2 , t , t / ε k u ε = f . It is shown that under standard assumptions on the function a ( x , y 1 , y 2 , t , τ ) the sequence { u ϵ } of solutions converges weakly in L 2 ( 0 , T ; H 0 1 ( Ω ) ) to the solution u of the homogenized problem u / t - div ( b ( x , t ) u ) = f .

Multiscale expansion and numerical approximation for surface defects⋆

V. Bonnaillie-Noël, D. Brancherie, M. Dambrine, F. Hérau, S. Tordeux, G. Vial (2011)

ESAIM: Proceedings

This paper is a survey of articles [5, 6, 8, 9, 13, 17, 18]. We are interested in the influence of small geometrical perturbations on the solution of elliptic problems. The cases of a single inclusion or several well-separated inclusions have been deeply studied. We recall here techniques to construct an asymptotic expansion. Then we consider moderately close inclusions, i.e. the distance between the inclusions tends to zero more slowly than their characteristic size. We provide a complete asymptotic...

Multiscale Finite Element approach for “weakly” random problems and related issues

Claude Le Bris, Frédéric Legoll, Florian Thomines (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We address multiscale elliptic problems with random coefficients that are a perturbation of multiscale deterministic problems. Our approach consists in taking benefit of the perturbative context to suitably modify the classical Finite Element basis into a deterministic multiscale Finite Element basis. The latter essentially shares the same approximation properties as a multiscale Finite Element basis directly generated on the random problem. The specific reference method that we use is the Multiscale...

Multiscale homogenization of nonlinear hyperbolic-parabolic equations

Abdelhakim Dehamnia, Hamid Haddadou (2023)

Applications of Mathematics

The main purpose of the present paper is to study the asymptotic behavior (when ε 0 ) of the solution related to a nonlinear hyperbolic-parabolic problem given in a periodically heterogeneous domain with multiple spatial scales and one temporal scale. Under certain assumptions on the problem’s coefficients and based on a priori estimates and compactness results, we establish homogenization results by using the multiscale convergence method.

Multiscale modelling of sound propagation through the lung parenchyma

Paul Cazeaux, Jan S. Hesthaven (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we develop and study numerically a model to describe some aspects of sound propagation in the human lung, considered as a deformable and viscoelastic porous medium (the parenchyma) with millions of alveoli filled with air. Transmission of sound through the lung above 1 kHz is known to be highly frequency-dependent. We pursue the key idea that the viscoelastic parenchyma structure is highly heterogeneous on the small scale ε and use two-scale homogenization techniques to derive effective...

Multiscale stochastic homogenization of convection-diffusion equations

Nils Svanstedt (2008)

Applications of Mathematics

Multiscale stochastic homogenization is studied for convection-diffusion problems. More specifically, we consider the asymptotic behaviour of a sequence of realizations of the form u ε ω / t + 1 / ϵ 3 𝒞 T 3 ( x / ε 3 ) ω 3 · u ε ω - div α T 1 ( x / ε 1 ) ω 1 , T 2 ( x / ε 2 ) ω 2 , t u ε ω = f . It is shown, under certain structure assumptions on the random vector field 𝒞 ( ω 3 ) and the random map α ( ω 1 , ω 2 , t ) , that the sequence { u ϵ ω } of solutions converges in the sense of G-convergence of parabolic operators to the solution u of the homogenized problem u / t - div ( ( t ) u ) = f .

Non-Markovian quadratic forms obtained by homogenization

Marc Briane (2003)

Bollettino dell'Unione Matematica Italiana

This paper is devoted to the asymptotic behaviour of quadratic forms defined on L 2 . More precisely we consider the Γ -convergence of these functionals for the L 2 -weak topology. We give an example in which some limit forms are not Markovian and hence the Beurling-Deny representation formula does not hold. This example is obtained by the homogenization of a stratified medium composed of insulating thin-layers.

Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations

Antoine Gloria (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce and analyze a numerical strategy to approximate effective coefficients in stochastic homogenization of discrete elliptic equations. In particular, we consider the simplest case possible: An elliptic equation on the d-dimensional lattice d with independent and identically distributed conductivities on the associated edges. Recent results by Otto and the author quantify the error made by approximating the homogenized coefficient by the averaged energy of a regularized corrector (with...

Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations

Antoine Gloria (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce and analyze a numerical strategy to approximate effective coefficients in stochastic homogenization of discrete elliptic equations. In particular, we consider the simplest case possible: An elliptic equation on the d-dimensional lattice d with independent and identically distributed conductivities on the associated edges. Recent results by Otto and the author quantify the error made by approximating the homogenized coefficient by the averaged energy of a regularized corrector (with...

Numerical homogenization: survey, new results, and perspectives

Antoine Gloria (2012)

ESAIM: Proceedings

These notes give a state of the art of numerical homogenization methods for linear elliptic equations. The guideline of these notes is analysis. Most of the numerical homogenization methods can be seen as (more or less different) discretizations of the same family of continuous approximate problems, which H-converges to the homogenized problem. Likewise numerical correctors may also be interpreted as approximations of Tartar’s correctors. Hence the...

On a variant of random homogenization theory: convergence of the residual process and approximation of the homogenized coefficients

Frédéric Legoll, Florian Thomines (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the variant of stochastic homogenization theory introduced in [X. Blanc, C. Le Bris and P.-L. Lions, C. R. Acad. Sci. Série I 343 (2006) 717–724.; X. Blanc, C. Le Bris and P.-L. Lions, J. Math. Pures Appl. 88 (2007) 34–63.]. The equation under consideration is a standard linear elliptic equation in divergence form, where the highly oscillatory coefficient is the composition of a periodic matrix with a stochastic diffeomorphism. The homogenized limit of this problem has been identified...

On asymptotics of solutions and eigenvalues of the boundary value problem with rapidly alternating boundary conditions for the system of elasticity

Olga A. Oleinik, Gregory Chechkin (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Boundary value problems for the system of linear elasticity with rapidly alternating boundary conditions are studied and asymptotic behavior of solutions is considered when a small parameter, which defines the oscillation of the boundary conditions, tends to zero. Estimates for the difference between such solutions and solutions of the limit problem are given.

On homogeneizatìon problems for the Laplace operator in partially perforated domains with Neumann's condition on the boundary of cavities.

Olga A. Oleinik, Tatiana Shaposhnikova (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper the problem of homogeneization for the Laplace operator in partially perforated domains with small cavities and the Neumann boundary conditions on the boundary of cavities is studied. The corresponding spectral problem is also considered.

On periodic homogenization in perfect elasto-plasticity

Gilles A. Francfort, Alessandro Giacomini (2014)

Journal of the European Mathematical Society

The limit behavior of a periodic assembly of a finite number of elasto-plastic phases is investigated as the period becomes vanishingly small. A limit quasi-static evolution is derived through two-scale convergence techniques. It can be thermodynamically viewed as an elasto-plastic model, albeit with an infinite number of internal variables.

Currently displaying 181 – 200 of 284