Displaying 161 – 180 of 341

Showing per page

On the Cauchy problem for linear hyperbolic functional-differential equations

Alexander Lomtatidze, Jiří Šremr (2012)

Czechoslovak Mathematical Journal

We study the question of the existence, uniqueness, and continuous dependence on parameters of the Carathéodory solutions to the Cauchy problem for linear partial functional-differential equations of hyperbolic type. A theorem on the Fredholm alternative is also proved. The results obtained are new even in the case of equations without argument deviations, because we do not suppose absolute continuity of the function the Cauchy problem is prescribed on, which is rather usual assumption in the existing...

On the domain dependence of solutions to the two-phase Stefan problem

Eduard Feireisl, Hana Petzeltová (2000)

Applications of Mathematics

We prove that solutions to the two-phase Stefan problem defined on a sequence of spatial domains Ω n N converge to a solution of the same problem on a domain Ω where Ω is the limit of Ω n in the sense of Mosco. The corresponding free boundaries converge in the sense of Lebesgue measure on N .

On the global regularity of subcritical Euler–Poisson equations with pressure

Eitan Tadmor, Dongming Wei (2008)

Journal of the European Mathematical Society

We prove that the one-dimensional Euler–Poisson system driven by the Poisson forcing together with the usual γ -law pressure, γ 1 , admits global solutions for a large class of initial data. Thus, the Poisson forcing regularizes the generic finite-time breakdown in the 2 × 2 p -system. Global regularity is shown to depend on whether or not the initial configuration of the Riemann...

On the Neumann problem with L¹ data

J. Chabrowski (2007)

Colloquium Mathematicae

We investigate the solvability of the linear Neumann problem (1.1) with L¹ data. The results are applied to obtain existence theorems for a semilinear Neumann problem.

Currently displaying 161 – 180 of 341