Displaying 21 – 40 of 95

Showing per page

Stabilité des solitons de l’équation de Landau-Lifshitz à anisotropie planaire

André de Laire, Philippe Gravejat (2014/2015)

Séminaire Laurent Schwartz — EDP et applications

Cet exposé présente plusieurs résultats récents quant à la stabilité des solitons sombres de l’équation de Landau-Lifshitz à anisotropie planaire, en particulier, quant à la stabilité orbitale des trains (bien préparés) de solitons gris [16] et à la stabilité asymptotique de ces mêmes solitons [2].

Stabilité et asymptotique en temps grand de solutions globales des équations de Navier-Stokes

Isabelle Gallagher, Dragoş Iftimie, Fabrice Planchon (2002)

Journées équations aux dérivées partielles

We study a priori global strong solutions of the incompressible Navier-Stokes equations in three space dimensions. We prove that they behave for large times like small solutions, and in particular they decay to zero as time goes to infinity. Using that result, we prove a stability theorem showing that the set of initial data generating global solutions is open.

Stabilité L 1 d’ondes progressives de lois de conservation scalaires

Denis Serre (1998/1999)

Séminaire Équations aux dérivées partielles

A powerfull method has been developped in [2] for the study of L 1 -stability of travelling waves in conservation laws or more generally in equations which display L 1 -contractivity, maximum principle and mass conservation. We recall shortly the general procedure. We also show that it partly applies to the waves of a model of radiating gas. These waves have first been studied by Kawashima and Nishibata [5,6] in a different framework. Therefore, shock fronts for this model are stable under mild perturbations....

Stability analysis of phase boundary motion by surface diffusion with triple junction

Harald Garcke, Kazuo Ito, Yoshihito Kohsaka (2009)

Banach Center Publications

The linearized stability of stationary solutions for the surface diffusion flow with a triple junction is studied. We derive the second variation of the energy functional under the constraint that the enclosed areas are preserved and show a linearized stability criterion with the help of the H - 1 -gradient flow structure of the evolution problem and the analysis of eigenvalues of a corresponding differential operator.

Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation

Angela Handlovičová, Karol Mikula (2008)

Applications of Mathematics

We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way.

Stability for a diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes

Yanling Tian (2014)

Applications of Mathematics

A diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes is considered. Local stability for each constant steady state is studied by analyzing the eigenvalues. Some simple and easily verifiable sufficient conditions for global stability are obtained by virtue of the stability of the related FDE and some monotonous iterative sequences. Numerical simulations and reasonable biological explanations are carried out to illustrate the main results and the justification...

Stability for approximation methods of the one-dimensional Kobayashi-Warren-Carter system

Hiroshi Watanabe, Ken Shirakawa (2014)

Mathematica Bohemica

A one-dimensional version of a gradient system, known as “Kobayashi-Warren-Carter system”, is considered. In view of the difficulty of the uniqueness, we here set our goal to ensure a “stability” which comes out in the approximation approaches to the solutions. Based on this, the Main Theorem concludes that there is an admissible range of approximation differences, and in the scope of this range, any approximation method leads to a uniform type of solutions having a certain common features. Further,...

Stability for dissipative magneto-elastic systems

Reinhard Racke (2003)

Banach Center Publications

In this survey we first recall results on the asymptotic behavior of solutions in classical thermoelasticity. Then we report on recent results in linear magneto-thermo-elasticity and magneto-elasticity, respectively.

Stability of Constant Solutions to the Navier-Stokes System in ℝ³

Piotr Bogusław Mucha (2001)

Applicationes Mathematicae

The paper examines the initial value problem for the Navier-Stokes system of viscous incompressible fluids in the three-dimensional space. We prove stability of regular solutions which tend to constant flows sufficiently fast. We show that a perturbation of a regular solution is bounded in W r 2 , 1 ( ³ × [ k , k + 1 ] ) for k ∈ ℕ. The result is obtained under the assumption of smallness of the L₂-norm of the perturbing initial data. We do not assume smallness of the W r 2 - 2 / r ( ³ ) -norm of the perturbing initial data or smallness of the...

Currently displaying 21 – 40 of 95