Loading [MathJax]/extensions/MathZoom.js
Displaying 381 –
400 of
462
We study the motion of a viscous incompressible fluid filling the whole three-dimensional space exterior to a rigid body, that is rotating with constant angular velocity ω, under the action of external force f. By using a frame attached to the body, the equations are reduced to (1.1) in a fixed exterior domain D. Given f = divF with , we consider this problem in D × ℝ and prove that there exists a unique solution when F and |ω| are sufficiently small. If, in particular, the external force for...
In this paper we are interested in constructing WKB approximations for the nonlinear cubic Schrödinger equation on a Riemannian surface which has a stable geodesic. These approximate solutions will lead to some instability properties of the equation.
We prove that strong solutions of the Boussinesq equations in 2D and 3D can be extended as analytic functions of complex time. As a consequence we obtain the backward uniqueness of solutions.
A parabolic system arisng as a viscosity regularization of the quasilinear one-dimensional telegraph equation is considered. The existence of - a priori estimates, independent of viscosity, is shown. The results are achieved by means of generalized invariant regions.
In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem.
Soit un espace topologique, un espace métrique et un système d’équations d’évolution admettant une solution dans pour toute donnée initiale dans et stable vis-à-vis des données initiales sur . On montre que l’ensemble des données initiales pour lesquelles admet une unique solution est un de . En particulier, si l’unicité est vraie sur un sous-ensemble dense de , elle l’est génériquement.
Let , be elliptic operators with Hölder continuous coefficients on a bounded domain of class . There is a constant depending only on the Hölder norms of the coefficients of and its constant of ellipticity such thatwhere (resp. ) are the Green functions of (resp. ) on .
We prove the uniqueness, up to shifts, of pulsating traveling fronts for reaction-diffusion equations in periodic media with Kolmogorov–Petrovskiĭ–Piskunov type nonlinearities. These results provide in particular a complete classification of all KPP pulsating fronts. Furthermore, in the more general case of monostable nonlinearities, we also derive several global stability properties and convergence to pulsating fronts for solutions of the Cauchy problem with front-like initial data. In particular,...
The Cauchy problem for a multidimensional linear transport equation with discontinuous coefficient is investigated. Provided the coefficient satisfies a one-sided Lipschitz condition, existence, uniqueness and weak stability of solutions are obtained for either the conservative backward problem or the advective forward problem by duality. Specific uniqueness criteria are introduced for the backward conservation equation since weak solutions are not unique. A main point is the introduction of a generalized...
Currently displaying 381 –
400 of
462