Parabolic partial differential equations with memory
Marián Slodička (1984)
Mathematica Slovaca
Alexandre N. Carvalho, Tomasz Dlotko (2004)
Colloquium Mathematicae
We study the existence of attractors for partly dissipative systems in ℝⁿ. For these systems we prove the existence of global attractors with attraction properties and compactness in a slightly weaker topology than the topology of the phase space. We obtain abstract results extending the usual theory to encompass such two-topologies attractors. These results are applied to the FitzHugh-Nagumo equations in ℝⁿ and to Field-Noyes equations in ℝ. Some embeddings between uniformly local spaces are also...
Benoît Perthame (2004)
Applications of Mathematics
Modeling the movement of cells (bacteria, amoeba) is a long standing subject and partial differential equations have been used several times. The most classical and successful system was proposed by Patlak and Keller & Segel and is formed of parabolic or elliptic equations coupled through a drift term. This model exhibits a very deep mathematical structure because smooth solutions exist for small initial norm (in the appropriate space) and blow-up for large norms. This reflects experiments on...
Tiantian Qiao, Jiebao Sun, Boying Wu (2011)
Annales Polonici Mathematici
We study a periodic reaction-diffusion system of a competitive model with Dirichlet boundary conditions. By the method of upper and lower solutions and an argument similar to that of Ahmad and Lazer, we establish the existence of periodic solutions and also investigate the stability and global attractivity of positive periodic solutions under certain conditions.
A. Fasano (1998)
Bollettino dell'Unione Matematica Italiana
L'articolo riassume il quadro dei risultati noti circa il cosiddetto problema di Stefan con sopraraffreddamento. Con ciò si intende in senso lato l'estensione del modello di Stefan a quei casi in cui la temperatura della fase liquida (solida) non è confinata al di sopra (sotto) di quella di cambiamento di fase, supposta costante. La nostra discussione è prevalentemente rivolta allo sviluppo di singolarità (non limitatezza della velocità dell'interfaccia, ecc.), al modo di prevederle, di prevenirle...
Maria E. Pliś (1998)
Annales Polonici Mathematici
A family of formal solutions of some type of nonlinear partial differential equations is found. Terms of such solutions are Laplace transforms of some Laplace distributions. The series of these distributions are locally finite.
Andreas M. Hinz (1986)
Journal für die reine und angewandte Mathematik
Andreas M. Hinz, Günter Stolz (1992)
Mathematische Annalen
Goncalves, Jose Valdo, Santos, Carlos Alberto P. (2004)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Ken-ichi Kamo, Hiroyuki Usami (2008)
Czechoslovak Mathematical Journal
In this paper we consider positive unbounded solutions of second order quasilinear ordinary differential equations. Our objective is to determine the asymptotic forms of unbounded solutions. An application to exterior Dirichlet problems is also given.
Walker, Christoph (2007)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Jean-Michel Bony (1990)
Journées équations aux dérivées partielles
G. Lebeau (1986/1987)
Séminaire Équations aux dérivées partielles (Polytechnique)
Jean-Luc Steux (1997)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Patrick Gérard, Jeffrey Rauch (1987)
Annales de l'institut Fourier
Pour tout réel positif , on étudie la propagation de la régularité locale pour des solutions d’équations aux dérivées partielles hyperboliques non linéaires, admettant a priori la régularité minimale permettant de définir les expressions non linéaires figurant dans l’équation. En particulier, on démontre le théorème de propagation dans le cas des solutions essentiellement bornées (resp. lipschitziennes) de systèmes du premier ordre semi-linéaires (resp. quasi-linéaires).
S. Alinahc, G. Metivier (1984)
Inventiones mathematicae
Thierry Daudé (2004)
Annales de l’institut Fourier
In this paper, we prove propagation estimates for a massive Dirac equation in flat spacetime. This allows us to construct the asymptotic velocity operator and to analyse its spectrum. Eventually, using this new information, we are able to obtain complete scattering results; that is to say we prove the existence and the asymptotic completeness of the Dollard modified wave operators.
Lorenza Diomeda, Benedetta Lisena (1987)
Rendiconti del Seminario Matematico della Università di Padova
N. Dungey (2007)
Revista Matemática Iberoamericana
Wang, Yulan, Mu, Chunlai, Xiang, Zhaoyin (2007)
Boundary Value Problems [electronic only]