Displaying 441 – 460 of 920

Showing per page

Multipliers and weighted ∂ operator estimates.

Joaquim Ortega-Cerdà (2002)

Revista Matemática Iberoamericana

We study estimates for the solution of the equation du=f in one variable. The new ingredient is the use of holomorphic functions with precise growth restrictions in the construction of explicit solution to the equation.

New a priori estimates for nondiagonal strongly nonlinear parabolic systems

Arina Arkhipova (2008)

Banach Center Publications

We consider nondiagonal elliptic and parabolic systems of equations with quadratic nonlinearities in the gradient. We discuss a new description of regular points of solutions of such systems. For a class of strongly nonlinear parabolic systems, we estimate locally the Hölder norm of a solution. Instead of smallness of the oscillation, we assume local smallness of the Campanato seminorm of the solution under consideration. Theorems about quasireverse Hölder inequalities proved by the author are essentially...

Non-generic blow-up solutions for the critical focusing NLS in 1-D

Joachim Krieger, Wilhelm Schlag (2009)

Journal of the European Mathematical Society

We consider the L 2 -critical focusing non-linear Schrödinger equation in 1 + 1 -d. We demonstrate the existence of a large set of initial data close to the ground state soliton resulting in the pseudo-conformal type blow-up behavior. More specifically, we prove a version of a conjecture of Perelman, establishing the existence of a codimension one stable blow-up manifold in the measurable category.

Nonlinear Schrödinger equation on four-dimensional compact manifolds

Patrick Gérard, Vittoria Pierfelice (2010)

Bulletin de la Société Mathématique de France

We prove two new results about the Cauchy problem in the energy space for nonlinear Schrödinger equations on four-dimensional compact manifolds. The first one concerns global well-posedness for Hartree-type nonlinearities and includes approximations of cubic NLS on the sphere as a particular case. The second one provides, in the case of zonal data on the sphere, local well-posedness for quadratic nonlinearities as well as a necessary and sufficient condition of global well-posedness for small energy...

Nonlinear Tensor Diffusion in Image Processing

Stašová, Olga, Mikula, Karol, Handlovičová, Angela, Peyriéras, Nadine (2017)

Proceedings of Equadiff 14

This paper presents and summarize our results concerning the nonlinear tensor diffusion which enhances image structure coherence. The core of the paper comes from [3, 2, 4, 5]. First we briefly describe the diffusion model and provide its basic properties. Further we build a semi-implicit finite volume scheme for the above mentioned model with the help of a co-volume mesh. This strategy is well-known as diamond-cell method owing to the choice of co-volume as a diamondshaped polygon, see [1]. We...

Norm inequalities for potential-type operators.

Sagun Chanillo, Jan-Olov Strömberg, Richard L. Wheeden (1987)

Revista Matemática Iberoamericana

The purpose of this paper is to derive norm inequalities for potentials of the formTf(x) = ∫(Rn) f(y)K(x,y)dy,     x ∈ Rn,when K is a Kernel which satisfies estimates like those that hold for the Green function associated with the degenerate elliptic equations studied in [3] and [4].

Observability inequalities and measurable sets

Jone Apraiz, Luis Escauriaza, Gengsheng Wang, C. Zhang (2014)

Journal of the European Mathematical Society

This paper presents two observability inequalities for the heat equation over Ω × ( 0 , T ) . In the first one, the observation is from a subset of positive measure in Ω × ( 0 , T ) , while in the second, the observation is from a subset of positive surface measure on Ω × ( 0 , T ) . It also proves the Lebeau-Robbiano spectral inequality when Ω is a bounded Lipschitz and locally star-shaped domain. Some applications for the above-mentioned observability inequalities are provided.

Observations on W 1 , p estimates for divergence elliptic equations with VMO coefficients

P. Auscher, M. Qafsaoui (2002)

Bollettino dell'Unione Matematica Italiana

In this paper, we make some observations on the work of Di Fazio concerning W 1 , p estimates, 1 < p < , for solutions of elliptic equations div A u = div f , on a domain Ω with Dirichlet data 0 whenever A V M O Ω and f L p Ω . We weaken the assumptions allowing real and complex non-symmetric operators and C 1 boundary. We also consider the corresponding inhomogeneous Neumann problem for which we prove the similar result. The main tool is an appropriate representation for the Green (and Neumann) function on the upper half space. We propose...

Currently displaying 441 – 460 of 920