Existence of solutions for quasilinear elliptic boundary value problems in unbounded domains.
A simple proof of the existence of solutions for the two-dimensional Keller-Segel model with measures with all the atoms less than 8π as the initial data is given. This result was obtained by Senba and Suzuki (2002) and Bedrossian and Masmoudi (2014) using different arguments. Moreover, we show a uniform bound for the existence time of solutions as well as an optimal hypercontractivity estimate.
This paper has two objectives. First, we prove the existence of solutions to the general advection-diffusion equation subject to a reasonably smooth initial condition. We investigate the behavior of the solution of these problems for large values of time. Secondly, a numerical scheme using the Sinc-Galerkin method is developed to approximate the solution of a simple model of turbulence, which is a special case of the advection-diffusion equation, known as Burgers' equation. The approximate solution...
The existence of solutions to the elliptic problem rot v = w, div v = 0 in a bounded domain Ω ⊂ ℝ³, , S = ∂Ω in weighted -Sobolev spaces is proved. It is assumed that an axis L crosses Ω and the weight is a negative power function of the distance to the axis. The main part of the proof is devoted to examining solutions of the problem in a neighbourhood of L. The existence in Ω follows from the technique of regularization.
We establish the existence of at least three weak solutions for the (p1,…,pₙ)-biharmonic system ⎧ in Ω, ⎨ ⎩ on ∂Ω, for 1 ≤ i ≤ n. The proof is based on a recent three critical points theorem.
We study the following singular elliptic equation with critical exponent ⎧ in Ω, ⎨u > 0 in Ω, ⎩u = 0 on ∂Ω, where (N≥3) is a smooth bounded domain, and λ > 0, γ ∈ (0,1) are real parameters. Under appropriate assumptions on Q, by the constrained minimizer and perturbation methods, we obtain two positive solutions for all λ > 0 small enough.