The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 21 –
40 of
591
Let be a bounded starshaped domain and consider the -Laplacian problem
where is a positive parameter, , and is the critical Sobolev exponent. In this short note we address the question of non-existence for non-trivial solutions to the -Laplacian problem. In particular we show the non-existence of non-trivial solutions to the problem by using a method based on Pohozaev identity.
A nonlinear elliptic partial differential equation with the Newton boundary conditions is examined. We prove that for greater data we get a greater weak solution. This is the so-called comparison principle. It is applied to a steady-state heat conduction problem in anisotropic magnetic cores of large transformers.
We deal with a class of Penrose-Fife type phase field models for phase transitions, where the phase dynamics is ruled by a Cahn-Hilliard type equation. Suitable assumptions on the behaviour of the heat flux as the absolute temperature tends to zero and to are considered. An existence result is obtained by a double approximation procedure and compactness methods. Moreover, uniqueness and regularity results are proved as well.
We study some aspects of the asymptotic behavior of the solutions to a class of nonlinear parabolic equations.
We prove some results on the existence and compactness of solutions of a fractional Nirenberg problem. The crucial ingredients of our proofs are the understanding of the blow up profiles and a Liouville theorem.
We deal with a generalization of the Stokes system. Instead of the Laplace operator, we consider a general elliptic operator and a pressure gradient with small perturbations. We investigate the existence and uniqueness of a solution as well its regularity properties. Two types of regularity are provided. Aside from the classical Hilbert regularity, we also prove the Hölder regularity for coefficients in VMO space.
Currently displaying 21 –
40 of
591