Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system.
François Bouchut, François Golse, Christophe Pallard (2004)
Revista Matemática Iberoamericana
Nicolas Depauw (2002/2003)
Séminaire Équations aux dérivées partielles
Nous exposons un exemple de non unicité du problème de Cauchy non caractéristique pour l’équation de transport associé à un champ de vecteurs borné, à divergence nulle et néanmoins à coefficients peu réguliers
Benalili, Mohammed (2005)
Lobachevskii Journal of Mathematics
Giovanni Bassanelli (1989)
Rendiconti del Seminario Matematico della Università di Padova
Antoni Dawidowicz, Anna Poskrobko (2006)
Control and Cybernetics
Giorgio Talenti (1995)
Journées équations aux dérivées partielles
Piernicola Bettiol (2005)
ESAIM: Control, Optimisation and Calculus of Variations
We study the asymptotic behavior of as , where is the viscosity solution of the following Hamilton-Jacobi-Isaacs equation (infinite horizon case)withWe discuss the cases in which the state of the system is required to stay in an -dimensional torus, called periodic boundary conditions, or in the closure of a bounded connected domain with sufficiently smooth boundary. As far as the latter is concerned, we treat both the case of the Neumann boundary conditions (reflection on the boundary)...
Piernicola Bettiol (2010)
ESAIM: Control, Optimisation and Calculus of Variations
We study the asymptotic behavior of as , where is the viscosity solution of the following Hamilton-Jacobi-Isaacs equation (infinite horizon case) with We discuss the cases in which the state of the system is required to stay in an n-dimensional torus, called periodic boundary conditions, or in the closure of a bounded connected domain with sufficiently smooth boundary. As far as the latter is concerned, we treat both the case of the Neumann boundary conditions (reflection on the...
Shif Berhanu (2009)
Annales de l’institut Fourier
We study the microlocal analyticity of solutions of the nonlinear equationwhere is complex-valued, real analytic in all its arguments and holomorphic in . We show that if the function is a solution, and or if is a solution, , , and , then . Here denotes the analytic wave-front set of and Char is the characteristic set of the linearized operator. When , we prove a more general result involving the repeated brackets of and of any order.
Z. Kamont (1977)
Annales Polonici Mathematici
S. Berhanu, A. Meziani (1996)
Manuscripta mathematica
Z. Kamont (1977)
Annales Polonici Mathematici
W. Mlak, E. Schechter (1969)
Annales Polonici Mathematici
Z. Kamont, W. Pawelski (1974)
Annales Polonici Mathematici
Dawidowicz, Antoni Leon, Haribash, Najemedin (2005)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Tomasz Człapiński (1991)
Czechoslovak Mathematical Journal
Vladislav A. Panferov (2004)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
The Povzner equation is a version of the nonlinear Boltzmann equation, in which the collision operator is mollified in the space variable. The existence of stationary solutions in is established for a class of stationary boundary-value problems in bounded domains with smooth boundaries, without convexity assumptions. The results are obtained for a general type of collision kernels with angular cutoff. Boundary conditions of the diffuse reflection type, as well as the given incoming profile, are...
R Alexandre, C Villani (2004)
Annales de l'I.H.P. Analyse non linéaire
L. Ambrosio, P. Cannarsa, H. M. Soner (1993)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Bouchaib Nadir, Alain Piriou (1989)
Journées équations aux dérivées partielles