Displaying 21 – 40 of 51

Showing per page

A note on the regularity of solutions of Hamilton-Jacobi equations with superlinear growth in the gradient variable

Pierre Cardaliaguet (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the regularity of solutions of first order Hamilton-Jacobi equation with super linear growth in the gradient variable. We show that the solutions are locally Hölder continuous with Hölder exponent depending only on the growth of the hamiltonian. The proof relies on a reverse Hölder inequality.

A note on the regularity of solutions of Hamilton-Jacobi equations with superlinear growth in the gradient variable

Pierre Cardaliaguet (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the regularity of solutions of first order Hamilton-Jacobi equation with super linear growth in the gradient variable. We show that the solutions are locally Hölder continuous with Hölder exponent depending only on the growth of the Hamiltonian. The proof relies on a reverse Hölder inequality.

A numerical method for the solution of the nonlinear observer problem

Rehák, Branislav (2021)

Programs and Algorithms of Numerical Mathematics

The central part in the process of solving the observer problem for nonlinear systems is to find a solution of a partial differential equation of first order. The original method proposed to solve this equation used expansions into Taylor polynomials, however, it suffers from rather restrictive assumptions while the approach proposed here allows to generalize these requirements. Its characteristic feature is that it is based on the application of the Finite Element Method. An illustrating example...

A robust entropy−satisfying finite volume scheme for the isentropic Baer−Nunziato model

Frédéric Coquel, Jean-Marc Hérard, Khaled Saleh, Nicolas Seguin (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We construct an approximate Riemann solver for the isentropic Baer−Nunziato two-phase flow model, that is able to cope with arbitrarily small values of the statistical phase fractions. The solver relies on a relaxation approximation of the model for which the Riemann problem is exactly solved for subsonic relative speeds. In an original manner, the Riemann solutions to the linearly degenerate relaxation system are allowed to dissipate the total energy in the vanishing phase regimes, thereby enforcing...

A uniqueness result for the continuity equation in two dimensions

Giovanni Alberti, Stefano Bianchini, Gianluca Crippa (2014)

Journal of the European Mathematical Society

We characterize the autonomous, divergence-free vector fields b on the plane such that the Cauchy problem for the continuity equation t u + . ˙ ( b u ) = 0 admits a unique bounded solution (in the weak sense) for every bounded initial datum; the characterization is given in terms of a property of Sard type for the potential f associated to b . As a corollary we obtain uniqueness under the assumption that the curl of b is a measure. This result can be extended to certain non-autonomous vector fields b with bounded divergence....

Adjoint methods for obstacle problems and weakly coupled systems of PDE

Filippo Cagnetti, Diogo Gomes, Hung Vinh Tran (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The adjoint method, recently introduced by Evans, is used to study obstacle problems, weakly coupled systems, cell problems for weakly coupled systems of Hamilton − Jacobi equations, and weakly coupled systems of obstacle type. In particular, new results about the speed of convergence of some approximation procedures are derived.

An approach based on matrix polynomials for linear systems of partial differential equations

N. Shayanfar, M. Hadizadeh (2013)

Special Matrices

In this paper, an approach based on matrix polynomials is introduced for solving linear systems of partial differential equations. The main feature of the proposed method is the computation of the Smith canonical form of the assigned matrix polynomial to the linear system of PDEs, which leads to a reduced system. It will be shown that the reduced one is an independent system of PDEs having only one unknown in each equation. A comparison of the results for several test problems reveals that the method...

An error analysis of the multi-configuration time-dependent Hartree method of quantum dynamics

Dajana Conte, Christian Lubich (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper gives an error analysis of the multi-configuration time-dependent Hartree (MCTDH) method for the approximation of multi-particle time-dependent Schrödinger equations. The MCTDH method approximates the multivariate wave function by a linear combination of products of univariate functions and replaces the high-dimensional linear Schrödinger equation by a coupled system of ordinary differential equations and low-dimensional nonlinear partial differential equations. The main result of this...

An existence result for a nonconvex variational problem via regularity

Irene Fonseca, Nicola Fusco, Paolo Marcellini (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Local Lipschitz continuity of minimizers of certain integrals of the Calculus of Variations is obtained when the integrands are convex with respect to the gradient variable, but are not necessarily uniformly convex. In turn, these regularity results entail existence of minimizers of variational problems with non-homogeneous integrands nonconvex with respect to the gradient variable. The x -dependence, explicitly appearing in the integrands, adds significant technical difficulties in the proof.

An existence result for a nonconvex variational problem via regularity

Irene Fonseca, Nicola Fusco, Paolo Marcellini (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Local Lipschitz continuity of minimizers of certain integrals of the Calculus of Variations is obtained when the integrands are convex with respect to the gradient variable, but are not necessarily uniformly convex. In turn, these regularity results entail existence of minimizers of variational problems with non-homogeneous integrands nonconvex with respect to the gradient variable. The x-dependence, explicitly appearing in the integrands, adds significant technical difficulties in the proof.

Currently displaying 21 – 40 of 51